matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnfangswertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertaufgabe
Anfangswertaufgabe < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertaufgabe: Rückfrage, Idee, Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:10 Do 07.12.2017
Autor: Dom_89

Aufgabe
Bestimme die Lösung der Anfangswertaufgabe:

y`(x)= [mm] (y(x))^2*e^{3x} [/mm] ; y(0) = 1

Hallo,

hier einmal mein Vorgehen:

y'(x)= [mm] (y(x))^2*e^{3x} [/mm]  <=> [mm] \bruch{dy}{dx} [/mm] = [mm] y^2*e^{3x} [/mm]
[mm] \integral {\bruch{1}{y^2}} [/mm] = [mm] e^{3x} [/mm] dx
[mm] -\bruch{1}{y}+c_{1} [/mm] = [mm] \bruch{1}{3}e^{3x}+c_{2} [/mm]
[mm] -\bruch{1}{y} [/mm] = [mm] \bruch{1}{3}e^{3x}+C [/mm]

-1 = [mm] y(\bruch{1}{3}e^{3x}+C) [/mm] <=> y(x) = [mm] -\bruch{3}{e^{3x}+C} [/mm]

Einbeziehen des Anfangwertes:

y(0) = C = -1 => y(0) = [mm] -\bruch{3}{e^{3x}-1} [/mm]

Ist mein Vorgehen so in Ordnung, oder muss noch etwas geändert werden ?

Vielen Dank!

        
Bezug
Anfangswertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Do 07.12.2017
Autor: Diophant

Hallo,

> Bestimme die Lösung der Anfangswertaufgabe:

>

> y'(x)= [mm](y(x))^2*e^{3x}[/mm] ; y(0) = 1
> Hallo,

>

> hier einmal mein Vorgehen:

>

> y'(x)= [mm](y(x))^2*e^{3x}[/mm] <=> [mm]\bruch{dy}{dx}[/mm] = [mm]y^2*e^{3x}[/mm]
> [mm]\integral {\bruch{1}{y^2}}[/mm] = [mm]e^{3x}[/mm] dx

hier fehlt dem linken Integral das Differenzial dy. Ansonsten passt es.

> [mm]-\bruch{1}{y}+c_{1}[/mm] = [mm]\bruch{1}{3}e^{3x}+c_{2}[/mm]

Integriert hast du korrekt. [ok]

Wieso addierst du auf beiden Seiten eine Konstante, macht ihr das so? Es ist nicht üblich, aber natürlich auch nicht falsch (denn du fasst im nächsten Schritt beide Konstanten sowieso wieder zu einer zusammen).


> [mm]-\bruch{1}{y}[/mm] = [mm]\bruch{1}{3}e^{3x}+C[/mm]

>

> -1 = [mm]y(\bruch{1}{3}e^{3x}+C)[/mm] <=> y(x) =
> [mm]-\bruch{3}{e^{3x}+C}[/mm]

>

Auch das passt, wobei du jetzt streng genommen die Konstante nochmals austauschen müsstest (es ist nicht mehr dieselbe wie vorhin, mache dir das klar!). Oder du bildest den Kehrwert korrekt, dann bekommst du mit der Konstante C aber

[mm]y=- \frac{3}{e^{3x}+3C}[/mm]

heraus.

> Einbeziehen des Anfangwertes:

>

> y(0) = C = -1 => y(0) = [mm]-\bruch{3}{e^{3x}-1}[/mm]

>

Hier ist ein Fehler, die C=-1 sind falsch.

Löse die Gleichung

[mm] e^{3*0}+C=1+C=-3 [/mm]

korrekt nach C auf.

> Ist mein Vorgehen so in Ordnung, oder muss noch etwas
> geändert werden ?

Wie gesagt, der einzige wirkliche Fehler ist der falsche Wert für C am Ende.


Gruß, Diophant

Bezug
                
Bezug
Anfangswertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Do 07.12.2017
Autor: Dom_89

Hallo,

vielen Dank für die Antwort!

Somit ist C = -4 und es müsste also lauten:

y(x) = [mm] -\bruch{3}{e^{3x}-4} [/mm]

Bezug
                        
Bezug
Anfangswertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Do 07.12.2017
Autor: fred97


> Hallo,
>  
> vielen Dank für die Antwort!
>  
> Somit ist C = -4 und es müsste also lauten:
>  
> y(x) = [mm]-\bruch{3}{e^{3x}-4}[/mm]  

Ja, jetzt stimmt es.  Eine simple Probe hätte Dir auch gezeigt, dass das richtig ist, FRED wäre also nicht nötig gewesen ! Was ich damit sagen will: immer schön die Probe machen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 14m 1. Filza
UAnaRn/Integral berechnen
Status vor 56m 8. Diophant
MSons/Induktion
Status vor 2h 10m 4. Gonozal_IX
UStoc/Verteilungsfunktion
Status vor 2h 47m 2. Diophant
UAnaR1FolgReih/n-te Partialsumme
Status vor 2h 58m 8. sancho1980
MSons/Zeigen, dass Formel gilt
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]