matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInternationale Mathe-OlympiadeAufgabe AWK
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Internationale Mathe-Olympiade" - Aufgabe AWK
Aufgabe AWK < Internationale MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Internationale Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe AWK: AWK 1993 Aufg.2
Status: (Frage) überfällig Status 
Datum: 20:21 Mi 17.11.2010
Autor: KingStone007

Hallo,
ist folgende Lösung so richtig:
Die Aufgabe ist: Man gebe in Abhängigkeit von n die Anzahl der Möglichkeiten an, die Zahl [mm] 2^n [/mm] als Summe von vier Quadraten zu schreiben.

          [mm] 2^n= [/mm] a²+b²+c²+d²

Ich bezeichne mal N(n) als die Anzahl eben dieser Möglichkeiten.
Ich erhalte durch probieren N(1)=0, N(2)=1...
Dann ist n>2
Die linke Seite ist dann durch 8 teilbar...
Betrachten wir die rechte Seite zunächst modulo 4, erhalten wir nur für den Fall, dass alle 4 Zahlen a,b,c,d ungerade sind oder gerade sind, kongruent mod 4, wie es sein muss aufgrund der Teilbarkeit der linken Seite.

Für den Fall, dass alle ungerade sind, erhalten wir für die Quadrate aber alle kongruent 1 mod 8, also die Summe kongruent 4 mod 8, im Widerspruch zu n>2 also 8 teil die linke, also auch die rechte Seite...

Demnach sind alle 4 Zahlen gerade...Substituirt man a=2a0, b=2b0, c=2c0, d=2d0, erhält man:

    2^(n-2)=a0²+b0²+c0²+d0²

Also ist N(n)=N(n-2)..
Mit N(1)=0 und N(2)=1 erhält man also 0 Möglichkeiten für ungerades n und eine Möglichkeit für gerades n.

Lg, David

        
Bezug
Aufgabe AWK: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 19.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Internationale Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 50m 7. Tobikall
ULinAAb/Permutationsgr./ Transposition
Status vor 2h 34m 62. Diophant
MSons/Kann man beim Roulette verlier
Status vor 4h 47m 2. matux MR Agent
DiffGlPar/Abschätzung
Status vor 6h 20m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 6h 47m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]