matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieAussage über Zählmass
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Probability Theory" - Aussage über Zählmass
Aussage über Zählmass < Probability Theory < Stochastic Theory < University < Maths <
View: [ threaded ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ all forums  | ^ Tree of Forums  | materials

Aussage über Zählmass: Frage (beantwortet)
Status: (Question) answered Status 
Date: 12:50 Sa 28/10/2017
Author: TheBozz-mismo

Aufgabe
Sei [mm] \mu :\mathcal{P} (\Omega) [/mm] -> [mm] \IN_o [/mm] das Zählmass auf einer Menge [mm] \Omega. [/mm] Beweisen Sie, dass [mm] \mu [/mm] genau dann [mm] \sigma- [/mm] endlich ist, wenn [mm] \Omega [/mm] abzählbar ist.

Hallo.
Ich benötige Hilfe bei der Aufgabe bzw. würd gern wissen, ob meine Überlegungen so richtig sind.
Also die Hinrichtung: Sei [mm] \mu [/mm] (Mass)  [mm] \sigma-endlich. [/mm] Daraus folgt, dass es abzählbar viele Mengen A mit endlichem Mass gibt, deren Vereinigung [mm] \Omega [/mm] ist und daraus folgt doch direkt, dass [mm] \Omega [/mm] abzählbar(da wenn das Mass endlich ist, auch die abzählbare Vereinigung von endlichen Mengen wieder endlich ist)

Zur Rückrichtung: Wenn [mm] \Omega [/mm] abzählbar, dann kann man die Elemente in [mm] \Omega [/mm] sortieren und folgt daraus nicht, dass es ein [mm] \Omega_i [/mm] gibt, was ein endliches Mas hat und was vereinigt wieder [mm] \Omega [/mm] ergibt?

Besonders bei der Rückrichtung bin ich mir unsicher, da ich ja eigentlich nichts gezeigt habe.

Lieben Gruß und vielen Dank

TheBozz-mismo

        
Bezug
Aussage über Zählmass: Antwort
Status: (Answer) finished Status 
Date: 07:29 Mo 30/10/2017
Author: fred97


> Sei [mm]\mu :\mathcal{P} (\Omega)[/mm] -> [mm]\IN_o[/mm] das Zählmass auf
> einer Menge [mm]\Omega.[/mm] Beweisen Sie, dass [mm]\mu[/mm] genau dann
> [mm]\sigma-[/mm] endlich ist, wenn [mm]\Omega[/mm] abzählbar ist.
>  Hallo.
>  Ich benötige Hilfe bei der Aufgabe bzw. würd gern
> wissen, ob meine Überlegungen so richtig sind.
>  Also die Hinrichtung: Sei [mm]\mu[/mm] (Mass)  [mm]\sigma-endlich.[/mm]
> Daraus folgt, dass es abzählbar viele Mengen A mit
> endlichem Mass gibt, deren Vereinigung [mm]\Omega[/mm] ist und
> daraus folgt doch direkt, dass [mm]\Omega[/mm] abzählbar(da wenn
> das Mass endlich ist, auch die abzählbare Vereinigung von
> endlichen Mengen wieder endlich ist)


Da läuft einiges verquer !

Sei [mm] \mu [/mm] ein [mm] \sigma [/mm] - endliches Maß, also gibt es eine Folge [mm] (A_n) [/mm] von Teilmengen von [mm] \Omega [/mm] mit

[mm] \mu(A_n) [/mm] < [mm] \infty [/mm] für alle n und [mm] \Omega= \bigcup_{n \ge 1}A_n [/mm]

Da [mm] \mu [/mm] das Zählmaß ist, ist jedes [mm] A_n [/mm] endlich (oder leer). Dann ist aber [mm] \Omega [/mm] höchstens abzählbar.


>  
> Zur Rückrichtung: Wenn [mm]\Omega[/mm] abzählbar, dann kann man
> die Elemente in [mm]\Omega[/mm] sortieren und folgt daraus nicht,
> dass es ein [mm]\Omega_i[/mm] gibt, was ein endliches Mas hat und
> was vereinigt wieder [mm]\Omega[/mm] ergibt?
>  
> Besonders bei der Rückrichtung bin ich mir unsicher, da
> ich ja eigentlich nichts gezeigt habe.

So ist es !

Sei [mm] \Omega [/mm] abzählbar, also [mm] \Omega=\{a_1,a_2,....\}. [/mm]

Setze [mm] A_n:=\{a_1,...,a_n\} [/mm] für n [mm] \in \IN. [/mm]

Dann haben wir: [mm] \mu(A_n) [/mm] < [mm] \infty [/mm] für alle n und [mm] \Omega= \bigcup_{n \ge 1}A_n [/mm]


[mm] \mu [/mm] ist also [mm] \sigma [/mm] - endlich.

>  
> Lieben Gruß und vielen Dank
>  
> TheBozz-mismo


Bezug
                
Bezug
Aussage über Zählmass: Mitteilung
Status: (Statement) No reaction required Status 
Date: 12:31 Mo 30/10/2017
Author: TheBozz-mismo

Vielen Dank für die Hilfe. Jetzt erscheint es mir klarer.

Lieben Gruß

TheBozz-mismo

Bezug
View: [ threaded ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 1h 37m 5. fred97
MaßTheo/Metrischer Raum, Offene Mengen
Status vor 9h 47m 3. Gonozal_IX
SIntRech/Stammfunktion/Integralfunktion
Status vor 10h 33m 2. matux MR Agent
OpRe/Reihenfolgeproblem
Status vor 12h 45m 56. HJKweseleit
MSons/Kann man beim Roulette verlier
Status vor 17h 0m 4. M.Rex
UDiskrMath/Türme von Hanoi (4Stäbe)
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]