matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasis und Dimension bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Basis und Dimension bestimmen
Basis und Dimension bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis und Dimension bestimmen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 09:40 Sa 04.11.2017
Autor: Sides

Aufgabe
Liebes Helferteam
Muss bei Folgender Aufgabe Basis und Dimension bestimmen, bin mir aber nicht sicher ob meine Lösung stimmt, Danke im
Voraus für eure Hilfe:

"Finden Sie für die folgenden Vektorräume jeweils eine Basis und bestimmen Sie die Dimension des Vektorraumes."

[mm] {(x1,x2,x3,x4)}\in \mathbb [/mm] R ^4 : x1= 2x2 , x1 + x4 = x3

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mein Lösungsvorschlag:

Ich konstruiere nun folgende Vektoren:

[mm] \begin{pmatrix} 3 \\ 1.5 \\ 4 \\ 1 \end{pmatrix} \mathbb [/mm] R
[mm] \begin{pmatrix} 8 \\ 4 \\ 3 \\ -5 \end{pmatrix} \mathbb [/mm] R
[mm] \begin{pmatrix} 4 \\ 2 \\ 7 \\ 3 \end{pmatrix} \mathbb [/mm] R
[mm] \begin{pmatrix} 1 \\ 0.5 \\ 1 \\ 0 \end{pmatrix} \mathbb [/mm] R

Die Vektoren stelle ich nun in einer Matrix dar und wende den Gauss an:

[mm] \begin{pmatrix} 3 & 8 & 4 & 1 \\ 1.5 & 4 & 2 & 0.5 \\ 4 & 3 & 7 & 1 \\ 1 & -5 & 3 & 0 \end{pmatrix} [/mm]

Vertausche die 1. und letzte Zeile.

Dann: II-1.5I = 0 12.5 -1.5 0.5, III-4I= 0 23 -5 1 , IV-3I = 0 23 -5 1


Meine neue Matrix ist dann: [mm] \begin{pmatrix} 1 & -5 & 3 & 0 \\ 0 & 12.5 & -1.5 & 0.5 \\ 0 & 23 & -5 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} [/mm]    


Die Base lautet dann :  { [mm] \begin{pmatrix} 1 \\ -5 \\ 3 \\ 0 \end{pmatrix} [/mm] + [mm] \begin{pmatrix} 0 \\ 12.5 \\ -1.5 \\ 0 \end{pmatrix} [/mm]  
+ [mm] \begin{pmatrix} 0 \\ 0 \\ -28 \\ 1 \end{pmatrix} [/mm] }

Mit Dimension 3.

Habe aber das Gefühl die Dimension müsste 2 sein, da x2 sowie x4 und x3 in Abhängigkeit von x1 sind.



        
Bezug
Basis und Dimension bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Sa 04.11.2017
Autor: Diophant

Hallo,

> Liebes Helferteam
> Muss bei Folgender Aufgabe Basis und Dimension bestimmen,
> bin mir aber nicht sicher ob meine Lösung stimmt, Danke
> im
> Voraus für eure Hilfe:

Schön wäre es immer, wenn sich Fragesteller nicht auf solche Hinweise wie bin mir aber nicht sicher ob meine Lösung stimmt beschränken würden, sondern eine nachvollziehbare Begründung für diese Unsichrheit lieferten. Denn deine Vorgehensweise unten bleibt mir ehrlich gesagt auch nach mehrmaligem Lesen völlig schleierhaft.

>

> "Finden Sie für die folgenden Vektorräume jeweils eine
> Basis und bestimmen Sie die Dimension des Vektorraumes."

>

> [mm]{(x1,x2,x3,x4)}\in \mathbb[/mm] R ^4 : x1= 2x2 , x1 + x4 = x3
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Mein Lösungsvorschlag:

>

> Ich konstruiere nun folgende Vektoren:

>

> [mm]\begin{pmatrix} 3 \\ 1.5 \\ 4 \\ 1 \end{pmatrix} \mathbb[/mm] R
> [mm]\begin{pmatrix} 8 \\ 4 \\ 3 \\ -5 \end{pmatrix} \mathbb[/mm] R
> [mm]\begin{pmatrix} 4 \\ 2 \\ 7 \\ 3 \end{pmatrix} \mathbb[/mm] R
> [mm]\begin{pmatrix} 1 \\ 0.5 \\ 1 \\ 0 \end{pmatrix} \mathbb[/mm]
> R

>

> Die Vektoren stelle ich nun in einer Matrix dar und wende
> den Gauss an:

>

> [mm]\begin{pmatrix} 3 & 8 & 4 & 1 \\ 1.5 & 4 & 2 & 0.5 \\ 4 & 3 & 7 & 1 \\ 1 & -5 & 3 & 0 \end{pmatrix}[/mm]

>

> Vertausche die 1. und letzte Zeile.

>

> Dann: II-1.5I = 0 12.5 -1.5 0.5, III-4I= 0 23 -5 1 , IV-3I
> = 0 23 -5 1

>
>

> Meine neue Matrix ist dann: [mm]\begin{pmatrix} 1 & -5 & 3 & 0 \\ 0 & 12.5 & -1.5 & 0.5 \\ 0 & 23 & -5 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>
>
>

> Die Base lautet dann : { [mm]\begin{pmatrix} 1 \\ -5 \\ 3 \\ 0 \end{pmatrix}[/mm]
> + [mm]\begin{pmatrix} 0 \\ 12.5 \\ -1.5 \\ 0 \end{pmatrix}[/mm]
> + [mm]\begin{pmatrix} 0 \\ 0 \\ -28 \\ 1 \end{pmatrix}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}
>

> Mit Dimension 3.

>

> Habe aber das Gefühl die Dimension müsste 2 sein, da x2
> sowie x4 und x3 in Abhängigkeit von x1 sind.

Dein Gefühl trügt dich nicht. Du hast ja das homogene LGS

[mm]\begin{aligned} x_1&=2x_2\\ x_1+x_4&=x_3\\ \end{aligned}[/mm]

gegeben, dem schon durch einmal scharfes Hinsehen Dim(V)=2 entnehmen kann. Für deine Zwecke stelle für dieses LGS die Koeffizientenmatrix auf. Da es nur zwei Gleichungen sind, hast du ja schon zwei Nullzeilen und musst nur noch zeigen, dass keine weitere Lineare Unabhängigkeit vorliegt. Am Ende hast du eine Lösung in Abhängigkeit von zwei Parametern, für die du irgendwelche Werte wählst, um eine Basis zu erhalten, die dann wohl aus wie vielen Vektoren besteht?


Gruß, Diophant

Bezug
                
Bezug
Basis und Dimension bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:45 Sa 04.11.2017
Autor: Sides

Hallo Diophant

Vielen Dank für dein Feedback.
Habe nochmals gerechnet, mit anderen Vektoren, bekomme dann folgendes:

[mm] \begin{pmatrix} 0 \\ 0 \\ 5 \\ 5 \end{pmatrix}\begin{pmatrix} 0 \\ 0 \\ 7 \\ 7 \end{pmatrix}\begin{pmatrix} 4 \\ 8 \\ 0\\-4\end{pmatrix}\begin{pmatrix} 2 \\ 4 \\ 2 \\ 0 \end{pmatrix} [/mm]

Nach Zeilenwechsel und Rechnen bekomme ich:

[mm] \begin{pmatrix} 2 & 4 & 2 & 0 \\ 0 & 0 & -4 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} [/mm]
Habe dein 2 Vektoren in meiner [mm] Basis:{\lambda\begin{pmatrix} 4 \\ 8 \\ 0 \\ -4 \end{pmatrix} \gamma\begin{pmatrix} 2 \\ 4 \\ 2 \\ 0 \end{pmatrix}} [/mm]

Könnte das so stimmen?

Lieber Gruss
Sides

Bezug
                        
Bezug
Basis und Dimension bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 Sa 04.11.2017
Autor: Diophant

Hallo,

wieso nimmst du meinen Hinweis nicht auf und wo kommen diese Vektoren immer her, mit denen du rechnest? (Entgegen anderslautenden Ansichten verwenden wir hier keine Kristallkugeln...)

Das LGS führt doch auf folgende Matrix:

[mm] \pmat{ 1 & -2 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}[/mm]

Da subtrahierst du jetzt noch die beiden oberen Zeilen und wählst zwei Parameter - fertig.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 36m 5. fred97
MaßTheo/Metrischer Raum, Offene Mengen
Status vor 9h 45m 3. Gonozal_IX
SIntRech/Stammfunktion/Integralfunktion
Status vor 10h 31m 2. matux MR Agent
OpRe/Reihenfolgeproblem
Status vor 12h 44m 56. HJKweseleit
MSons/Kann man beim Roulette verlier
Status vor 16h 58m 4. M.Rex
UDiskrMath/Türme von Hanoi (4Stäbe)
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]