matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteBasis und Skalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Skalarprodukte" - Basis und Skalarprodukt
Basis und Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis und Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Fr 29.08.2014
Autor: marasy

Aufgabe
a) Sei H = [mm] \IC^2 [/mm] mit Orthonormalbasis [mm] |e_1> ,|e_2>. [/mm] Ein Operator A sei in dieser Basis gegeben durch die Matrix A^(e) = [mm] \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} [/mm] AUßerdem sei |(u)> = [mm] |(e_1)>, [/mm] |(v)> = [mm] |(e_2)>. [/mm] Berechnen sie <(u^(e) |A^(e) v^(e)> und <(u^(e) A^(e) | v^(e)>.
b) Nun definieren wir eine zweite Basis [mm] |(f_1)> [/mm] = [mm] |(e_1)>, |(f_2)> [/mm] = 2 [mm] |(e_2)>, [/mm] die zwar orthogonal, aber nicht orthonormal ist, denn es gilt [mm] <(f_2|f_2)> [/mm] = 4. Wie lauten die Komponenten von <(u^(f)|, |(v^(f)> und A^(f) ? (....)

a) ist kein Problem, bloß bei b) bin ich mir gerade unsicher.
<u^(f) | = (1 0) sollte gelten, aber wieso lautet die Lösung für v=  [mm] \begin{pmatrix} 0 \\ 1/2 \end{pmatrix} [/mm] ?

Ich weiß, dass aus [mm] f_2 [/mm] = 2 [mm] e_2 [/mm] und [mm] e_2 [/mm] = v folgt, dass v= 1/2 [mm] f_2 [/mm] ist, aber ich dachte, dass dadurch , dass 2 [mm] e_2 [/mm] = [mm] \begin{pmatrix} 0 \\ 2 \end{pmatrix} [/mm] = [mm] f_2 [/mm] ist, v wieder den selben Wert annehmen müsste.

Kann mir jemand sagen, wo mein Denkfehler liegt ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Basis und Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Fr 29.08.2014
Autor: leduart

Wenn [mm] F_2 [/mm] Basisvektor ist, dann ist [mm] f_2=(0,1=^T [/mm] also [mm] v=1/2f_2=(0,1/2)^T [/mm]
Du verwechselst die Darstellung von f:2 in der Basis mit e mit der Darstellung von v in der Basis mit f.
Gruß leduart

Bezug
                
Bezug
Basis und Skalarprodukt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:52 Mo 01.09.2014
Autor: marasy

Hallo, tut mir leid, dass ich mich so spät melde, aber ich war am Wochenende nicht da. Danke, dass du versuchst mir zu helfen :3
Also habe ich es richtig verstanden:
Ich wähle mir ein neues Koordinaten system, in dem die Länge "1" in x-Richtung der Länge "1" in "e"-Darstellung entspricht und anschließend für die y-Richtung ein System, das "1" ist, wenn man in "e"-Darstellung die Länge "2" hat ? dann würde ich verstehen, warum mein "v" im neuen system die länge 1/2 hat.
Tut mir leid, dass die Beschreibung so grottig ist^^

Bezug
                        
Bezug
Basis und Skalarprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 03.09.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 11h 38m 15. X3nion
UAnaR1FolgReih/Weierstraß Approximationssatz
Status vor 12h 35m 1. derbierbaron
UAuslg/Amann Escher , Analysis 1
Status vor 16h 56m 10. Al-Chwarizmi
LaTeX/Graphenverlauf "verfeinern"
Status vor 1d 18h 58m 7. matux MR Agent
UFina/Interner Zinsfuß
Status vor 2d 7. Al-Chwarizmi
S8-10/Logarithmusgleichung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]