matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikBeweis der Portfoliovarianz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - Beweis der Portfoliovarianz
Beweis der Portfoliovarianz < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Portfoliovarianz: Erklärung der Beweisschritte
Status: (Frage) beantwortet Status 
Datum: 22:37 Fr 17.03.2017
Autor: kakarade

Schönen Abend alle Zusammen,

ich muss für ein Seminar die Portfoliovarianz beweisen. Ich habe auch den Beweis gefunden. Ich verstehe nur die Schritte zum Beweis nicht. Da wollte ich fragen, ob mir einer die Schritte des Beweise genau erklären kann, also welche Regeln genau wann und wie verwendet wurden? Hier der Beweis.

[mm] {\begin{aligned}\operatorname {Var} \left(\sum _{i=1}^{N}a_{i}X_{i}\right)&=\sum _{i,j=1}^{N}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})\\&=\sum _{i=1}^{N}a_{i}^{2}\operatorname {Var} (X_{i})+\sum _{i\not =j}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})\\&=\sum _{i=1}^{N}a_{i}^{2}\operatorname {Var} (X_{i})+2\sum _{1\leq i
PS.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vielen Dank schon mal an Alle und schönen Abend noch :)

        
Bezug
Beweis der Portfoliovarianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:18 Sa 18.03.2017
Autor: luis52

Moin kakarade,

[willkommenmr]

Wo genau hakt's denn?

Bezug
                
Bezug
Beweis der Portfoliovarianz: Antwort auf Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:44 Sa 18.03.2017
Autor: kakarade

Guten Morgen,
im ersten Schritt wird ja die Beziehung Var(X)=Cov(X,X) angewendet und der Faktor vorgezogen mit [mm] Var(aX)=a^{2}, [/mm] wobei [mm] a_{i} [/mm] ungleich [mm] a_{j} [/mm] ist. Im zweiten Schritt verstehe ich nicht, wie Cov(X+Z;Y) = Cov(X;Y)+Cov(Z;Y) verwendet wird. Ich verstehe nicht warum dort auf einmal die Summe von Var + Summe von Cov steht. Und im letzten Schritt müsste dieser Schritt angewendet worden sein Var(aX+bY) = aVar(X) + bVar(Y) + 2abCov(X;Y), aber ich verstehe nicht warum sich die Summenenden im Kovarianzteil verändern und wo Var(X) und Var(Y) verloren gegangen sind?

Ich hoffe ich konnte dir das Problem näher erläutern?
VG und Danke, dass du es dir anschaust


Bezug
                        
Bezug
Beweis der Portfoliovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Sa 18.03.2017
Autor: luis52


> Guten Morgen,
>  im ersten Schritt wird ja die Beziehung Var(X)=Cov(X,X)
> angewendet und der Faktor vorgezogen mit [mm]Var(aX)=a^{2},[/mm]
> wobei [mm]a_{i}[/mm] ungleich [mm]a_{j}[/mm] ist.

Gut, ich verstehe, dass dir der erste Schritt [mm] $\operatorname [/mm] {Var} [mm] \left(\sum _{i=1}^{N}a_{i}X_{i}\right)&=\sum _{i,j=1}^{N}a_{i}a_{j}\operatorname [/mm] {Cov} [mm] (X_{i},X_{j})$ [/mm] klar ist.


> Im zweiten Schritt verstehe
> ich nicht, wie Cov(X+Z;Y) = Cov(X;Y)+Cov(Z;Y) verwendet
> wird. Ich verstehe nicht warum dort auf einmal die Summe
> von Var + Summe von Cov steht.

Der Summand [mm] $\operatorname [/mm] {Cov} [mm] (X_{i},X_{j})$ [/mm] ist  [mm] $\operatorname [/mm] {Var} [mm] (X_{i})$ [/mm] fuer $i=j$, und davon gibt es $n$ Stueck, die in der ersten Summe [mm] $\sum _{i=1}^{N}a_{i}^{2}\operatorname [/mm] {Var} [mm] (X_{i})$ [/mm] zusammengefasst werden.

> Und im letzten Schritt
> müsste dieser Schritt angewendet worden sein Var(aX+bY) =
> aVar(X) + bVar(Y) + 2abCov(X;Y),

Gruebel, gruebel? [mm] $\operatorname{Var}(aX+bY) [/mm] =  [mm] a^2\operatorname{Var}(X) [/mm] + [mm] b^2\operatorname{Var}(Y) [/mm] + [mm] 2ab\operatorname{Cov}(XY)$, [/mm] was in der zweiten Gleichung angewandt wurde.

> aber ich verstehe nicht
> warum sich die Summenenden im Kovarianzteil verändern und
> wo Var(X) und Var(Y) verloren gegangen sind?
>

Die Varianzen *sind* da, und zwar im ersten Summanden. Die Veraenderung besteht in  [mm] $\sum _{i\not =j}a_{i}a_{j}\operatorname [/mm] {Cov} [mm] (X_{i},X_{j})=2\sum _{1\leq i


Bezug
                                
Bezug
Beweis der Portfoliovarianz: Danke fürs beantworten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 Sa 18.03.2017
Autor: kakarade

Hallo,

vielen Dank für das beantworten meiner Frage :) Jetzt habe ich es verstanden :)

Ich wünsche dir noch ein schönes Wochenende :)

VG

Bezug
                                        
Bezug
Beweis der Portfoliovarianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Sa 18.03.2017
Autor: luis52

Gerne.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 17m 7. Tipsi
UAnaR1FunkInt/Faltungen abschätzen
Status vor 20m 2. Al-Chwarizmi
z-transformation/z transformation und dann?
Status vor 27m 12. Tipsi
IntTheo/Flächenmaß berechnen
Status vor 1h 11m 3. Marie886
Algebra/Gleichung auflösen
Status vor 1h 39m 3. Teekanne3d
UAnaR1FolgReih/Potenzreihe
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]