matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Dichteverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik (Anwendungen)" - Dichteverteilung
Dichteverteilung < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichteverteilung: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:15 Mi 25.10.2017
Autor: mariella22

Aufgabe
Sei λ ∈R>0. Sei X eine stetige Zufallsvariable, s.d. die Dichtefunktion definiert ist durch:
fX(x) =ke^(−λx) für x ≥ 0
und 0 für x < 0 , wobei k ∈R.
(1) Welche k muss man nehmen?
(2) Geben Sie die Wahrscheinlichkeitsverteilung von fX(x).
(3) Berechnen P(X > [mm] 1)^x [/mm] ∀x ∈R.
(4) Seien a,b ∈ R. Berechnen Sie P(X > a + b | X > b). Was kann man daraus schliessen?

Hallo,
ich komme leider überhaupt nicht voran.
bei der 1) habe ich überlegt das die Intergral der Dichte von - bis + unendlich ja 1 sein muss damit  es überhaupt eine Dichte ist, und ob ich die Werte für k damit bestimmen kann. Aber wie intergriere ich das bei diesen Grenzen?

Bei der 2.)
F(x)=  [mm] \integral_{0}^{N} [/mm] ke^(-λx) [mm] \, [/mm] dx
Stimmt das so?

3.)
Ich hatte überlegt,
P(x [mm] \ge [/mm] 1) wäre
F(x)=  [mm] \integral_{1}^{N} [/mm] ke^(-λx) [mm] \, [/mm] dx
aber was mache ich wenn die x strikt > 1 ist? Und was gange ich mit dem ^x an?

4.)
Hier hatte ich es so interpretiert:
Wie wahrscheinlich ist es, falls x > b, dass x auch > a+b ist
Ich habe mir das auf der x -Achse aufgezeichnet und dann gäbe es 2 Fälle:
1.) wenn a < b, dann ist die Wahrscheinlichkeit gleich 1
2.) wenn b < a, dann wäre die Wahrscheinlichkeit
= [mm] \integral_{b}^{N} ke^{−λx}\, [/mm] dx - [mm] \integral_{a}^{b} ke^{−λx}\, [/mm] dx
Stimmt das??

Ich hab das Gefühl, dass ich bei diesen Aufgaben auf dem Holzweg bin. Wäre sehr froh um Hilfe. Danke!

        
Bezug
Dichteverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Mi 25.10.2017
Autor: Gonozal_IX

Hallo mariella,

vorab: Nutze doch bitte den [mm] $\LaTeX$-Editor… [/mm] so ist das nur schwer lesbar.

> ich komme leider überhaupt nicht voran.
>  bei der 1) habe ich überlegt das die Intergral der Dichte
> von - bis + unendlich ja 1 sein muss damit  es überhaupt
> eine Dichte ist, und ob ich die Werte für k damit
> bestimmen kann.

[ok]
Rechne das Integral doch mal aus und stelle dann nach $k$ um.

> Aber wie intergriere ich das bei diesen Grenzen?

Wie gewohnt. Stammfunktion bilden und Grenzen einsetzen.
Deine Verwirrung kommt sicherlich durch das [mm] "$\infty$", [/mm] rein technisch kannst du das auch einfach einsetzen. Formal müsstest du das natürlich über einen Grenzwert bestimmen. Das Ergebnis ist aber dasselbe.

> Bei der 2.)
>  F(x)=  [mm]\integral_{0}^{N}[/mm] ke^(-λx) [mm]\,[/mm] dx
> Stimmt das so?

[notok]
Was soll denn das N sein?
Die linke Seite hängt von x ab, die rechte nicht mehr.
Deine Idee ist richtig, deine Notation solltest du aber nochmal überprüfen.
Und das richtige k aus 1 einsetzen.

>  
> 3.)
>  Ich hatte überlegt,
> P(x [mm]\ge[/mm] 1) wäre
> F(x)=  [mm]\integral_{1}^{N}[/mm] ke^(-λx) [mm]\,[/mm] dx
>  aber was mache ich wenn die x strikt > 1 ist? Und was

> gange ich mit dem ^x an?

Auch hier: Was ist denn dein N plötzlich? Dein k solltest du natürlich aus 1 kennen.
Tipp: Was ist denn die Gegenwahrscheinlichkeit? Die kennst du aus 2 doch!


> 4.)
>  Hier hatte ich es so interpretiert:
>  Wie wahrscheinlich ist es, falls x > b, dass x auch > a+b

> ist
> Ich habe mir das auf der x -Achse aufgezeichnet und dann
> gäbe es 2 Fälle:
> 1.) wenn a < b, dann ist die Wahrscheinlichkeit gleich 1

Warum sollte das so sein?
Das ist offensichtlich auch falsch.

> 2.) wenn b < a, dann wäre die Wahrscheinlichkeit
> = [mm]\integral_{b}^{N} ke^{−λx}\,[/mm] dx - [mm]\integral_{a}^{b} ke^{−λx}\,[/mm]
> dx
> Stimmt das??

Warum sollte das so sein?
Verwende die Definition der bedingten Wahrscheinlichkeit!!!!

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 37m 1. BooWseR
UAnaR1FolgReih/Grenzwertbestimmung a_n
Status vor 2h 57m 4. Gonozal_IX
UStoc/Markov Kette: Definitionen
Status vor 6h 06m 1. Noya
ULinASon/Fourier-Motzkin_elimination
Status vor 7h 07m 4. Steffi21
STrigoFktn/cos2(x)=sin2(2x)
Status vor 7h 21m 11. Diophant
ULinASon/Lineare Optimierung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]