matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeDreieck im Halbkreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Dreieck im Halbkreis
Dreieck im Halbkreis < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck im Halbkreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Di 17.01.2017
Autor: rollroll

Aufgabe
Einem Halbkreis soll ein Dreieck mit möglichst großem Inhalt so einbeschrieben werden, dass eine Seite des Dreiecks auf dem Durchmesser des Halbkreises liegt.

Hallo,

also für den Flächeninhalt der minimiert werden soll, gilt: A=1/2 gh.
Was mir allerdings nicht einfallen will, ist wie die Nebenbedingung lautet...

Für eure Hilfe wäre ich dankbar.

        
Bezug
Dreieck im Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Di 17.01.2017
Autor: M.Rex

Hallo.

Bedenke, dass die Grundseite hier der Durchmesser ist, und, da das ein Thaleskreis ist, das Dreieck auf dem "Bogenpunkt" rechtwinklig ist. Daher gilt dann auch der Höhensatz des Euklid. Das führt zu [mm] h^{2}=pq, [/mm] und es gilt q=2r-p, also [mm] h^{2}=p\cdot(2r-p) [/mm]

Also gilt
[mm] A=\frac{1}{2}\cdot g\cdot h=\frac{1}{2}\cdot2r\cdot\sqrt{p\cdot(2r-p)}=r\cdot\sqrt{2pr-p^{2}} [/mm]

Diese Formel ist dann nur noch von einem der Hypotenusenabschnitte abhängig, der Radius des Kreises r ist ja fest.

Marius

Bezug
        
Bezug
Dreieck im Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Di 17.01.2017
Autor: Steffi21

Hallo, mal ohne Haupt- und Nebenbedingung und ohne Ableitung u.s.w.

[mm] A=\bruch{1}{2}*d*h_d [/mm]

Die Grundseite des Dreiecks, der Durchmesser ist eine feste Größe, ebenso der Faktor [mm] \bruch{1}{2}, [/mm] also kannst Du nur die Höhe verändern, mache Dir eine Skizze und überlege Dir, wann die Höhe maximal wird, wo liegt die Höhe also,

Steffi

Bezug
                
Bezug
Dreieck im Halbkreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Di 17.01.2017
Autor: rollroll

Naja, wenn die Höhe gerade dem Radius entspricht oder?

Also wäre [mm] A=1/2*r*2r=r^2. [/mm]

Aber auf dem Weg von M.Rex erhalte ich ein anderes Ergebnis (mit Wurzel(3))

Bezug
                        
Bezug
Dreieck im Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Di 17.01.2017
Autor: Steffi21

Hallo, die Höhe entspricht dem Radius, also verläuft die Höhe durch den Mittelpunkt des Kreises

[mm] A(p)=r*\wurzel{2*r*p-p^2} [/mm]

[mm] A'(p)=\bruch{r*(2*r-2*p)}{2*\wurzel{2*r*p-p^2}} [/mm]

1. Ableitung gleich Null setzen, also Zähler gleich Null setzen, nix mit Wurzel 3

Steffi





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 9h 49m 2. matux MR Agent
SStatHypo/Welche Verfahren wählen?
Status vor 10h 11m 7. Diophant
ULinASon/Lineare Optimierung
Status vor 1d 7h 06m 2. fred97
UAnaR1FunkDiff/Polynomfunktion differenzierba
Status vor 1d 7h 20m 1. Stephan30
Maxima/Indizes zählen mit Funktion
Status vor 1d 8h 56m 1. mathenoob3000
UStoc/Markov Kette: Definitionen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]