matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteElement bester Approximation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Element bester Approximation
Element bester Approximation < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Element bester Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Di 24.07.2007
Autor: Hiroschiwa

Aufgabe
Im Vektorraum V der stetigen reelen Funktioen sei ein Skalarprodukt gegeben durch
[mm] s(f,g)=\integral_{-\pi}^{\pi}{f(x)*g(x) dx} [/mm] .
Betrachten Sie den Untervektorraum U=<1,x> von V und zeigen sie, Dass h [mm] \in [/mm] U mit
[mm] h(x)=\bruch{3*x}{\pi^{2}} [/mm]
das bezüglich s Element bester Approximation für die Funktion a mit a(x)=sin(x) ist.

Was will der von mir? Wie soll ich das zeigen?

Wäre nett wenn mir da einer mal ein bisschen Helfen könnte.

        
Bezug
Element bester Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Di 24.07.2007
Autor: dormant

Hi!

Man will eigentlich eine Funkiton f finden, so dass ||f-a|| minimal ist bezüglich f, dh, dass es keine andere Funktion [mm] g\in [/mm] U gibt, so dass [mm] ||g-a||\le [/mm] ||f-a||. Es ist außerdem [mm] ||a||=\wurzel{} [/mm]

Daher sollst du zeigen, dass für alle [mm] f\in [/mm] U gilt:

[mm] ||h-a||\le [/mm] ||f-a||, was das gleich ist wie

[mm] \wurzel{s(h-a, h-a)}\le \wurzel{s(f-a, f-a)}. [/mm]

Die Funktion f ist, wie alle Funktionen aus U, der Form [mm] f(x)=\alpha+\beta*x, [/mm] mit [mm] \alpha, \beta \in \IK. [/mm]

Gruß,
dormant

Bezug
                
Bezug
Element bester Approximation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:52 Di 24.07.2007
Autor: Hiroschiwa

ok, [mm] \wurzel{s(h-a, h-a)} [/mm] konnte ich berechnen. [mm] \wurzel{\pi-\bruch{6}{\pi}} [/mm]
bei [mm] \wurzel{s(f-a, f-a)} [/mm] ahbe ich mich mit  [mm] f(x)=\alpha+\beta\cdot{}x [/mm] durchgehangelt, und ein ziehmlich komplizierten aussdruck bekommen. Aber ich glaube nicht das ich damit weiterkomme, zumal ich den ausdruck ich in der knappen zeit einer klausur nie rausbekommen hätte.  
gibt es da jetzt einen trick f direkt zu bekommen oder muss man mit einem beweis und viel theoriewissen zeigen das h-a beste approximation ist?

Bezug
                        
Bezug
Element bester Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Di 24.07.2007
Autor: felixf

Hallo!

> ok, [mm]\wurzel{s(h-a, h-a)}[/mm] konnte ich berechnen.
> [mm]\wurzel{\pi-\bruch{6}{\pi}}[/mm]
>  bei [mm]\wurzel{s(f-a, f-a)}[/mm] ahbe ich mich mit  
> [mm]f(x)=\alpha+\beta\cdot{}x[/mm] durchgehangelt, und ein ziehmlich
> komplizierten aussdruck bekommen. Aber ich glaube nicht das
> ich damit weiterkomme, zumal ich den ausdruck ich in der
> knappen zeit einer klausur nie rausbekommen hätte.

Wenn du es auf diesem Wege ausrechnen willst: Erstmal am Besten quadrieren, um die Wurzel wegzubekommen. Dann bekommst du wahrscheinlich eine quadratische Funktion heraus, die du auf Extremstellen untersuchen kannst (Gradient auf Null setzen). Dies sollte dir ein Minimum liefern.
  

> gibt es da jetzt einen trick f direkt zu bekommen oder muss
> man mit einem beweis und viel theoriewissen zeigen das h-a
> beste approximation ist?

Sooo viel Theorie braucht man auch wieder nicht :-)

Ich nehme mal an, dass ihr schon folgende Aequivalenz hattet: $h [mm] \in [/mm] U$ ist Bestapproximation von $a$ (bzgl. $s$), wenn fuer alle $u [mm] \in [/mm] U$ gilt $s(u, h - a) = 0$.

Dann musst du naemlich nur noch nachrechnen, dass fuer alle $u [mm] \in [/mm] U$ gilt $s(u, h - a) = 0$. Da jedes $u [mm] \in [/mm] U$ von der Form [mm] $\lambda [/mm] 1 + [mm] \mu [/mm] x$ ist, und da $s$ bilinear ist, reicht es also $s(1, h - a) = 0$ und $s(x, h - a) = 0$ zu zeigen.

Du musst also gerade mal zwei Integrale ausrechnen, und das solltest du in der Klausur hinbekommen :) Insbesondere weisst du ja auch noch, das beide Integrale 0 sein sollten, was evtl. zum schnellen Finden von Rechenfehlern beitraegt...

LG Felix


Bezug
                                
Bezug
Element bester Approximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Di 24.07.2007
Autor: Hiroschiwa

Also ist es das schnellste dein Lemma "$ h [mm] \in [/mm] U $ ist Bestapproximation von $ a $ (bzgl. $ s $), wenn fuer alle $ u [mm] \in [/mm] U $ gilt $ s(u, h - a) = 0 $. " zu nennen
dann ausrechen das beide integrale =0.
schlussfolgern : deshalb muss h beste approx.  bezgl. s für a sein. fertig


Vielen Dank euch allen für die schnelle Hilfe

Ich werde dann mal sehen was ich für den Server spenden kann :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]