matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenErste Bsp Differentialgl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Erste Bsp Differentialgl
Erste Bsp Differentialgl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erste Bsp Differentialgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:34 Mi 02.03.2016
Autor: sissile

Aufgabe
Finden Sie die vollständige Lösung für die Differentialgleichung
1) f'(t) + a f(t)=0
2) f'(t)+ a f(t)=b mit a,b [mm] \in \mathbb{R} [/mm]
Versuchen Sie [mm] f(t)=e^{\lambda t} [/mm] und/oder f(t)=pt+q

Hallo,
Wir setzen bei den Bsp keine Vorkenntnisse in Gewöhnliche Differentialgleichungen vorraus.

1) Sei F(t):= f(x) [mm] e^{at} [/mm]
F'(t)= f'(t) [mm] e^{at} [/mm] + f(t) a [mm] e^{at} [/mm] = [mm] e^{at} [/mm] (f'(t) + f(t) [mm] a)=e^{at}*0=0 [/mm]
[mm] \Rightarrow [/mm] F(t)= constant
[mm] \Rightarrow \exists [/mm] c [mm] \in \mathbb{R}: [/mm] f(t) [mm] e^{at}=c \Rightarrow f(t)=c*e^{-at} \forall [/mm] t [mm] \in \mathbb{R} [/mm]

2) Hab ich noch nicht gelöst. f(t)=b/a ist eine Lösung
[mm] \phi(t)=c e^{-at} [/mm] ist die allgemeine Lösung für b=0
Setze f(t)= [mm] \phi(t) [/mm] * u(t) so ist [mm] f'(t)=\phi'(t)* [/mm] u(t) + [mm] \phi(t) [/mm] u'(t).
Da [mm] \phi'(t)=- [/mm] a [mm] \phi(t) [/mm] ist formt sich das um auf: b-a*f(t) = u'(t) [mm] \phi(t) [/mm] + u(t) *a * [mm] \phi(t). [/mm]

LG,
sissi

        
Bezug
Erste Bsp Differentialgl: Antwort
Status: (Antwort) fertig Status 
Datum: 06:14 Mi 02.03.2016
Autor: fred97



> Finden Sie die vollständige Lösung für die
> Differentialgleichung
>  1) f'(t) + a f(t)=0
>  2) f'(t)+ a f(t)=b mit a,b [mm]\in \mathbb{R}[/mm]
>  Versuchen Sie
> [mm]f(t)=e^{\lambda t}[/mm] und/oder f(t)=pt+q
>  Hallo,
>  Wir setzen bei den Bsp keine Vorkenntnisse in Gewöhnliche
> Differentialgleichungen vorraus.
>  
> 1) Sei F(t):= f(x) [mm]e^{at}[/mm]

Hier setzt Du wohl voraus, dass f eine Lösung der DGL ist.


>  F'(t)= f'(t) [mm]e^{at}[/mm] + f(t) a [mm]e^{at}[/mm] = [mm]e^{at}[/mm] (f'(t) + f(t)
> [mm]a)=e^{at}*0=0[/mm]
>  [mm]\Rightarrow[/mm] F(t)= constant
>  [mm]\Rightarrow \exists[/mm] c [mm]\in \mathbb{R}:[/mm] f(t) [mm]e^{at}=c \Rightarrow f(t)=c*e^{-at} \forall[/mm]
> t [mm]\in \mathbb{R}[/mm]

Hiermit ist gezeigt: ist f eine Lösung der DGL, so gibt es ein c [mm] \in \IR [/mm] mit:

    [mm] f(t)=c*e^{-at} \forall [/mm] t [mm] \in \IR. [/mm]


>  
> 2) Hab ich noch nicht gelöst. f(t)=b/a ist eine Lösung
>  [mm]\phi(t)=c e^{-at}[/mm] ist die allgemeine Lösung für b=0
>  Setze f(t)= [mm]\phi(t)[/mm] * u(t) so ist [mm]f'(t)=\phi'(t)*[/mm] u(t) +
> [mm]\phi(t)[/mm] u'(t).
>  Da [mm]\phi'(t)=-[/mm] a [mm]\phi(t)[/mm] ist formt sich das um auf:
> b-a*f(t) = u'(t) [mm]\phi(t)[/mm] + u(t) *a * [mm]\phi(t).[/mm]

Das stimmt nicht. Richtig ist:

b-a*f(t) = u'(t) [mm]\phi(t)[/mm] - u(t) *a * [mm]\phi(t).[/mm]

FRED

>  
> LG,
>  sissi


Bezug
                
Bezug
Erste Bsp Differentialgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:36 Mi 02.03.2016
Autor: sissile

Na klar ;) War wohl schon zu spät!

Daraus erhalte ich b= u'(t) [mm] \phi(t). [/mm]
[mm] \iff [/mm] b= u'(t) c [mm] e^{-at} [/mm]
[mm] \Rightarrow \int \frac{b}{c} e^{at} [/mm] = [mm] \int [/mm] u'(t) dt
[mm] \Rightarrow \frac{b}{c} \frac{e^{at}}{a}= [/mm] u(t) + const
[mm] \Rightarrow [/mm] u(t)= [mm] \frac{b}{c} \frac{e^{at}}{a} [/mm] + [mm] C_1 [/mm] mit [mm] C_1 \in \mathbb{R} [/mm]

Daraus erhalte ich f(x)=c [mm] e^{-at} C_1 [/mm] + [mm] \frac{b}{a}= C_2 e^{-at} [/mm] + [mm] \frac{b}{a} [/mm] mit [mm] C_2 \in \mathbb{R} [/mm]

Okay?
LG,
Sissi


Bezug
                        
Bezug
Erste Bsp Differentialgl: Antwort
Status: (Antwort) fertig Status 
Datum: 06:53 Mi 02.03.2016
Autor: fred97


> Na klar ;) War wohl schon zu spät!
>  
> Daraus erhalte ich b= u'(t) [mm]\phi(t).[/mm]
>  [mm]\iff[/mm] b= u'(t) c [mm]e^{-at}[/mm]
>  [mm]\Rightarrow \int \frac{b}{c} e^{at}[/mm] = [mm]\int[/mm] u'(t) dt
>  [mm]\Rightarrow \frac{b}{c} \frac{e^{at}}{a}=[/mm] u(t) + const
>  [mm]\Rightarrow[/mm] u(t)= [mm]\frac{b}{c} \frac{e^{at}}{a}[/mm] + [mm]C_1[/mm] mit
> [mm]C_1 \in \mathbb{R}[/mm]
>  
> Daraus erhalte ich f(x)=c [mm]e^{-at} C_1[/mm] + [mm]\frac{b}{a}= C_2 e^{-at}[/mm]
> + [mm]\frac{b}{a}[/mm] mit [mm]C_2 \in \mathbb{R}[/mm]
>  
> Okay?

Ja

FRED

>  LG,
>  Sissi
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4h 09m 2. matux MR Agent
Matlab/Kraft im Stabtragwerk
Status vor 8h 40m 1. Orchis
UAnaR1FolgReih/Folgenglieder abschätzen
Status vor 10h 09m 6. matux MR Agent
SStochWkeit/Simulation eines Markov-Prozes
Status vor 18h 48m 21. steve.joke
SStochWkeit/Bedingte Wahrscheinlichkeit
Status vor 19h 06m 5. James90
ULinASon/Lineare Unabhängigkeit
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]