matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:11 Mo 20.05.2013
Autor: clarysha

Aufgabe
Annika hat ihr Zimmer auf dem Spitzboden des Hauses. Für die Giebelwand ohne Fenster wünscht sie sich einen Schrank, der die Wand möglichst gut ausfüllt. Sie hat die Wand gemessen und möchte nun wissen, wie breit und hoch der Schrank sein müsste. Bestimmen Sie die gesuchten Maße und berechnen Sie wie viel Prozent der Wandfläche durch den Schrank ausgefüllt wird.

Abgebildet ist neben der Aufgabe nun ein gleichschenkliges Dreieck. Die Höhe beträgt 4 meter und die untere Seite 3 meter. Darin befindet sich ein quadrat mit der unteren seitenfläche a und der höhe b.
a und b werden nun gesucht. Da das Volumen maximal werden soll brauche ich die 1.ableitung und muss den Wert für den (normalerweise) Hochpunkt nehmen.

Volumenformel des quadrats : a x b

Ich hatte erst den Anfang : (4-b) x (3-a)=6-ab
aber irgendwie kam ich da auch nicht weiter und denke mal das das nicht richtig ist. Kann mir da vielleicht jemand weiterhelfen und irgendeinen ansatz geben? wäre lieb!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 20.05.2013
Autor: M.Rex

Hallo und [willkommenmr]

> Annika hat ihr Zimmer auf dem Spitzboden des Hauses. Für
> die Giebelwand ohne Fenster wünscht sie sich einen
> Schrank, der die Wand möglichst gut ausfüllt. Sie hat die
> Wand gemessen und möchte nun wissen, wie breit und hoch
> der Schrank sein müsste. Bestimmen Sie die gesuchten Maße
> und berechnen Sie wie viel Prozent der Wandfläche durch
> den Schrank ausgefüllt wird.
> Abgebildet ist neben der Aufgabe nun ein gleichschenkliges
> Dreieck. Die Höhe beträgt 4 meter und die untere Seite 3
> meter. Darin befindet sich ein quadrat mit der unteren
> seitenfläche a und der höhe b.

Du meinst ein Rechteck, oder? Mit einem Quadrat wäre die Aufgabe "witzlos".

> a und b werden nun gesucht. Da das Volumen maximal werden
> soll brauche ich die 1.ableitung und muss den Wert für den
> (normalerweise) Hochpunkt nehmen.

>

> Volumenformel des quadrats : a x b

Der Formel entnehme ich, dass du ein Rechteck suchst.


>

> Ich hatte erst den Anfang : (4-b) x (3-a)=6-ab
> aber irgendwie kam ich da auch nicht weiter und denke mal
> das das nicht richtig ist. Kann mir da vielleicht jemand
> weiterhelfen und irgendeinen ansatz geben? wäre lieb!

>

Gehen wir mal von folgender Situation aus:

[Dateianhang nicht öffentlich]

Dann gibt es drei Mögliche Varianten für die Nebenbedingung:
Variante 1, per Strahlensatz (Zentrum A)
[mm] \frac{\frac{b}{2}}{3}=\frac{4-a}{4} [/mm]

Variante 2, mit Strahlensatz, Zentrum B
[mm] \frac{a}{4}=\frac{3-\frac{b}{2}}{3} [/mm]

Variante drei, über eine lineare Funktion durch die Punkte A und B, damit kannst du die Geradengleichung der Dachschräge ermitteln. Für diese Gleicung gilt:
[mm] a(x)=-\frac{4}{3}x+4 [/mm]

Berechne nun [mm] a\left(\frac{b}{2}\right) [/mm] dann hast du die y-Koordinate des Punktes C, und damit die Höhe des Schrankes in Abhängigkeit von der Breite b.

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Mo 20.05.2013
Autor: clarysha

Vielen Dank, das hilft mir für meine Prüfung am Freitag weiter! Und dann noch so schnell beantwortet, wow danke!

Bezug
                        
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Mo 20.05.2013
Autor: M.Rex


> Vielen Dank, das hilft mir für meine Prüfung am Freitag
> weiter!

Dann viel Erfolg dabei.

> Und dann noch so schnell beantwortet, wow danke!

Bitte.

Eine Kleinigkeit aber noch, oder auch nicht mehr ganz so klein.

Du hattest, woher auch immer, die Bedingung [mm] (4-b)\cdot(3-a) [/mm]

Aber [mm] (4-b)\cdot(3-a)\ne6-ab, [/mm] da ist dir beim Ausmultiplizieren etwas gewaltig schief gegangen.

Marius

Bezug
        
Bezug
Extremwertaufgabe: Lösung
Status: (Frage) beantwortet Status 
Datum: 19:47 Mo 20.05.2013
Autor: clarysha

Ich habe nun die Lösung.
Bezogen auf das Koordinatensystem von dir, so habe ich mich auf die Aufgabe bezogen vllt etwas falsch ausgedrückt.
Die Wandbreite beträgt nicht insgesamt 6m sondern insgesamt 3m. Von daher habe ich das Koordinatensystem so angelegt, dass die Nullstelle bei 1,5 liegt und erhielt somit  die Gleichung -8/3x+4.
In dieser habe ich die b/2 eingesetzt und nach b aufgelöst. Damit habe ich für b=3 erhalten.
Daraufhin habe ich die Gleichung gleich 3 gesetzt und nach x aufgelöst und erhielt somit 0,375.
Das habe ich mit 2 multipliziert um a zu erhalten.
Somit habe ich nun b=3 und a=0,75 heraus bekommen. Der Flächeninhalt wäre somit 2,25m².  

Ist das so richtig?

Bezug
                
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Mo 20.05.2013
Autor: M.Rex


> Ich habe nun die Lösung.
> Bezogen auf das Koordinatensystem von dir, so habe ich
> mich auf die Aufgabe bezogen vllt etwas falsch
> ausgedrückt.
> Die Wandbreite beträgt nicht insgesamt 6m sondern
> insgesamt 3m. Von daher habe ich das Koordinatensystem so
> angelegt, dass die Nullstelle bei 1,5 liegt und erhielt
> somit die Gleichung -8/3x+4.

Das ist dann ok.

> In dieser habe ich die b/2 eingesetzt und nach b
> aufgelöst. Damit habe ich für b=3 erhalten.

Das kann so nicht sein, b darf kein fester Wert sein.

Es gilt:

[mm] a\left(\frac{b}{2}\right)=-\frac{8}{3}\cdot\frac{b}{2}+4=-\frac{4b}{3}+4 [/mm]

Damit hast du die Nebenbedingung:
[mm] a=-\frac{4b}{3}+4 [/mm]

Das in die Hauptbedingung eingesetzt, ergibt die folgende Zielfunktion für die Fläche A in Abhängigkeit von b:
[mm] A=b\cdot\left(-\frac{4b}{3}+4\right) [/mm]

Von dieser Funktion suchst du nun das Maximum.




> Daraufhin habe ich die Gleichung gleich 3 gesetzt und nach
> x aufgelöst und erhielt somit 0,375.
> Das habe ich mit 2 multipliziert um a zu erhalten.
> Somit habe ich nun b=3 und a=0,75 heraus bekommen. Der
> Flächeninhalt wäre somit 2,25m².

>

> Ist das so richtig?

Leider nein.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 46m 2. Diophant
ZahlTheo/Vollständige Induktion
Status vor 5h 27m 2. Diophant
UStoc/Zweistufiges Zufallsexperiment
Status vor 7h 38m 7. Diophant
UAnaR1FolgReih/Rekursive Darstellung Folgen
Status vor 7h 50m 2. Diophant
UKomplx/Addition Exponentialform
Status vor 20h 37m 2. X3nion
UAnaR1FolgReih/Konvergenz
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]