matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK 60: AnalysisFakultät
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "VK 60: Analysis" - Fakultät
Fakultät < VK 60: Ana < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fakultät: ausklammern
Status: (Frage) beantwortet Status 
Datum: 19:46 Fr 16.12.2016
Autor: b.reis

Aufgabe
Beweisen oder widerlegen sSie die Gleichheit
[mm] \bruch{n!}{(m-1)!(n-m+1)!}+\bruch{n!}{m!(n-m)!}=\bruch{(n+1)!}{m!(n-(m-1))!} [/mm]

Hallo,

nachdem alles auf einen Bruch geschrieben wurde sieht die linke Seite so aus:

[mm] n!*\bruch{m!(n-m)!+(m-1)!(n-m+1)!}{m!(n-m)!(m-1)!(n-m+1)!} [/mm]

um kürzen zu können wird aus den klammern m ausgeklammert. So dass der Bruch dann sie aussieht:

[mm] n!*\bruch{m(m-1)!(n-m)!+(m-1)!(n-m+1)(n-m)!}{m!(m-1)!(n-m+1)(n-m)!} [/mm]

Ist das alles was man ausklammern kann ? denn ich kenne nur die Regel (m+1)!=(m+1)*m!

und beide Male wurde diese Regel angewandt.
Weil dann wäre es nämlich sehr viel einfacher solche Brüche umzuformen.

Vielen Dank
Benni


        
Bezug
Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Fr 16.12.2016
Autor: X3nion

Hallo Benni,

in meinen Augen hast du fast ein wenig zu viel erweitert!

[mm] \bruch{n!}{(m-1)!(n-m+1)!}+\bruch{n!}{m!(n-m)!}=\bruch{(n+1)!}{m!(n-(m-1))!} [/mm] bzw.

[mm] \bruch{n!}{(m-1)!(n-m+1)!}+\bruch{n!}{m!(n-m)!}=\bruch{(n+1)!}{m!(n-m+1))!} [/mm]

ist zu zeigen oder zu widerlegen.


Im ersten Bruch steht ja schon (n-m+1)! da, jedoch (m-1)!
Wir wollen m!, folglich erweitern wir oben und unten mit m, denn damit haben wir:

[mm] \bruch{n!}{(m-1)!(n-m+1)!} [/mm] = [mm] \bruch{n! * m}{(m-1)! * m * (n-m+1)!} [/mm] = [mm] \bruch{n! * m}{m! * (n-m+1)!} [/mm]


Im zweiten Bruch haben wir schon das m!, allerdings steht nur (n-m)! da.
Wir wollen aber (n-m+1)!. Folglich erweitern wir den zweiten Bruch oben und unten mit (n-m+1).

Dann haben wir:

[mm] \bruch{n!}{m!(n-m)!} [/mm] = [mm] \bruch{n! * (n-m+1) }{m!(n-m)! * (n-m+1)} [/mm] = [mm] \bruch{n! * (n-m+1) }{m!(n-m+1)!}. [/mm]

Insgesamt ergibt sich:

[mm] \bruch{n!}{(m-1)!(n-m+1)!}+\bruch{n!}{m!(n-m)!} [/mm] = [mm] \bruch{n! * m}{m! * (n-m+1)!} [/mm] + [mm] \bruch{n! * (n-m+1) }{m!(n-m+1)!} [/mm] = [mm] \bruch{n! * m + n! * (n-m+1)}{m!(n-m+1)!} [/mm] = [mm] \bruch{n! (m + (n-m+1))}{m!(n-m+1)!} [/mm] = [mm] \bruch{n! (n+1)}{m!(n-m+1)!} [/mm] = [mm] \bruch{(n+1)!}{m!(n-m+1)!} [/mm]

was zu zeigen war.


VG X3nion

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 6h 42m 63. rabilein1
MSons/Kann man beim Roulette verlier
Status vor 12h 39m 6. Al-Chwarizmi
UStoc/Geordnete Stichproben mit Wdh.
Status vor 12h 41m 12. Diophant
ULinAAb/Permutationsgr./ Transposition
Status vor 1d 14h 26m 2. matux MR Agent
DiffGlPar/Abschätzung
Status vor 1d 16h 26m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]