matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisFourier-Transformation Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Fourier-Transformation Beweis
Fourier-Transformation Beweis < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier-Transformation Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Do 07.04.2016
Autor: Paivren

Hallo zusammen, hier sind ein paar kleine Aussagen, die ich nicht bewiesen bekomme. Kann mir wer helfen?

Fourier-Transformationen seien so definiert:
[mm] \Psi_{2}(p)=\bruch{1}{\sqrt{2\pi\hbar}}\integral_{-\infty}^{\infty}{e^{-ip\bruch{x}{\hbar}}\Psi_{1}(x) dx} =:F[\Psi_{1}(x)] [/mm]


[mm] \Psi_{1}(x)=\bruch{1}{\sqrt{2\pi\hbar}}\integral_{-\infty}^{\infty}{e^{ip\bruch{x}{\hbar}}\Psi_{2}(p) dp}=:F[\Psi_{2}(p)] [/mm]

Nun soll gezeigt werden:
1) [mm] e^{-ip_{0}\bruch{x}{\hbar}}\Psi_{2}(p)=F[\Psi_{1}(x-x_{0})] [/mm]

Mein Ansatz:
[mm] e^{-ip_{0}\bruch{x}{\hbar}}\Psi_{2}(p)=\bruch{1}{\sqrt{2\pi\hbar}}e^{-ip_{0}\bruch{x}{\hbar}}\integral_{-\infty}^{\infty}{e^{-ip\bruch{x}{\hbar}}\Psi_{1}(x) dx} [/mm]

Aber wie soll es weiter gehen??


2) [mm] F[\Psi_{1}(c*x)]=\bruch{1}{|c|}\Psi_{2}(\bruch{p}{c}) [/mm]

Mein Ansatz: u:=c*x [mm] \Rightarrow dx=\bruch{1}{c}du [/mm]

[mm] F[\Psi_{1}(c*x)]=F[\Psi_{1}(u)]=\bruch{1}{\sqrt{2\pi\hbar}}\bruch{1}{c}\integral_{-\infty}^{\infty}{e^{-ip\bruch{u}{\hbar}}\Psi_{1}(u) du} [/mm]

Aber wie man weiter schlussfolgert, weiß ich nicht.
Auch die Betragsstriche um das c kommen mir unnütz vor.


Viele Grüße

        
Bezug
Fourier-Transformation Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Fr 08.04.2016
Autor: chrisno

Bei 1. ist meiner Meinung nach der Index 0 an einer falschen Stelle gelandet, prüfe noch einmal, ob das, was Du geschrieben hast, auch das ist, was Du beweisen sollst.
Schreib das Integral für ) $ [mm] F[\Psi_{1}(x-x_{0})] [/mm] $ hin, substituiere und ziehe einen Teil der e-Funktion vor das Integral.

Bei 2. stimmt Deine Idee, Du hast aber bei der Durchführung geschlampt. Schreib erst das Integral mit dem cx hin und substituiere dann. Da passiert auch etwas im Exponenten.

Um die Notwendigkeit der Betragsstriche einzusehen, wähle eine einfaches Beispiel und probier es mit negativem c aus.

Bezug
                
Bezug
Fourier-Transformation Beweis: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:01 Sa 09.04.2016
Autor: Paivren

Hallo Chrisno,

erstmal zu 1): Dann ist das wohl ein Fehler in meinem Buch, ich soll nämlich genau zeigen, was ich geschrieben hab :(

Aber auch mit deinem Vorschlag komm ich nicht ganz klar.
[mm] F[\Psi_{1}(x-x_{0})]=\bruch{1}{\sqrt{2\pi\hbar}}\integral_{-\infty}^{\infty}{e^{-ip\bruch{(x-x_{0}}{\hbar}}\Psi_{1}(x-x_{0}) d(x-x_{0}} [/mm]
[mm] =\bruch{1}{\sqrt{2\pi\hbar}}\integral_{-\infty}^{\infty}{e^{-ip\bruch{u}{\hbar}}\Psi_{1}(u) du} [/mm]

Und nun?


Bezug
                        
Bezug
Fourier-Transformation Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 Sa 09.04.2016
Autor: Paivren

keine Ahnung, wieso der Code nicht richtig abgebildet wird, die struktur ist die gleiche wie oben...

Bezug
                
Bezug
Fourier-Transformation Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Sa 09.04.2016
Autor: Paivren

Ich habe es verstanden, beide Punkte!

Dennoch ist die Aufgabe dann falsch gestellt in meinem Buch, weil da eben [mm] p_{0} [/mm] steht.

Vielen Dank dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 39m 6. pc_doctor
UAnaR1/Rekursionsgleichung lösen
Status vor 2h 02m 17. luis52
UStat/Prüfen auf Verteilung
Status vor 2h 17m 6. Al-Chwarizmi
Mengenlehre/Mengenlehre - Operationen
Status vor 2h 25m 7. Gonozal_IX
UDiskrMath/Beweisen von Injektivität
Status vor 2h 35m 8. Gonozal_IX
UWTheo/Verteilungsfunktion berechnen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]