matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenGew. aut. DGL - Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Gew. aut. DGL - Konvergenz
Gew. aut. DGL - Konvergenz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gew. aut. DGL - Konvergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 02:53 Di 21.04.2015
Autor: DudiPupan

Aufgabe
First-oder autonomus initial value problem:
[mm] $$\dot x=f(x),\quad x(0)=x_0,$$ [/mm]
where $f$ is such that the solutions are unique (e.g. [mm] $f\in C^1$). [/mm]
(i) If [mm] $f(x_0)=0$ [/mm] then [mm] $x(t)=x_0$ [/mm] for all $t$.
(ii) If [mm] $f(x_0)\neq [/mm] 0$, then $x(t)$ converges to the first zero left [mm] ($f(x_0)<0$) [/mm] respectively right [mm] ($f(x_0)>0$) [/mm] of [mm] $x_0$. [/mm] If there ist no such zero the solution converges to [mm] $-\infty$, [/mm] respectively [mm] $\infty$. [/mm]


Guten Abend zusammen,

ich muss für eine Präsentation die oben stehenden Aussagen beweisen und bin mir bei (ii) etwas unsicher.

(i) Ist klar. Hier ist ja die Aussage einfach, dass die Ruhelage einer autonomen gew. DGL 1. Ord. schon durch die Nullstellen von $f$ gegeben ist. Dies gilt, da für [mm] $f(x_0)=0$ [/mm] offensichtlich [mm] $x\equiv x_0$ [/mm] (eindeutige) Lösung des AWPs ist.

Bei (ii) habe ich mir folgendes gedacht:
Sei also [mm] $x_0$ [/mm] mit [mm] $f(x_0)<0$ [/mm] und existiere eine Nullstelle [mm] $x^\ast$ [/mm] von $f$ links neben [mm] $x_0$, [/mm] dann gilt natürlich $dx/dt=f(x)<0$ für [mm] $x\in (x^\ast,x_0)$, [/mm] d.h. $x$ fällt streng monoton in diesem Intervall. Damit finden wir ein [mm] $t^\ast$ [/mm] so groß, dass für [mm] $X(t):=x(t)-x^\ast$ [/mm] gilt: [mm] $|n(t)|\ll [/mm] 1$ für [mm] $t>t^\ast$ [/mm] und damit können wir linearisieren (+Taylor) und erhalten
[mm] $$dX(t)/dt\approx X(t)f'(x^\ast)\quad $\Rightarrow X(t)\propto \exp(f'(x^\ast)t)$$ [/mm]
Nun ist es klar, falls $f$ bei [mm] $x^\ast$ [/mm] einen Vorzeichenwechsel hat, damit hier also von - nach + und damit [mm] $f'(x^\ast)<0$, [/mm] womit [mm] $X(t)\to [/mm] 0$ und damit [mm] $x(t)\to x^\ast$ [/mm] für [mm] $t\to \infty$ [/mm] gilt.

Wenn aber nun aber $f$ die $x$-Achse an der Stelle [mm] $x^\ast$ [/mm] nur berührt? Dann funktioniert das oben ja nicht?

Würde mich sehr über Hilfe freuen

Liebe Grüße
DudiPupan

        
Bezug
Gew. aut. DGL - Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Di 21.04.2015
Autor: fred97


> First-oder autonomus initial value problem:
>  [mm]\dot x=f(x),\quad x(0)=x_0,[/mm]
>  where [mm]f[/mm] is such that the
> solutions are unique (e.g. [mm]f\in C^1[/mm]).
>  (i) If [mm]f(x_0)=0[/mm] then
> [mm]x(t)=x_0[/mm] for all [mm]t[/mm].
>  (ii) If [mm]f(x_0)\neq 0[/mm], then [mm]x(t)[/mm] converges to the first
> zero left ([mm]f(x_0)<0[/mm]) respectively right ([mm]f(x_0)>0[/mm]) of [mm]x_0[/mm].
> If there ist no such zero the solution converges to
> [mm]-\infty[/mm], respectively [mm]\infty[/mm].
>  
> Guten Abend zusammen,
>  
> ich muss für eine Präsentation die oben stehenden
> Aussagen beweisen und bin mir bei (ii) etwas unsicher.
>  
> (i) Ist klar. Hier ist ja die Aussage einfach, dass die
> Ruhelage einer autonomen gew. DGL 1. Ord. schon durch die
> Nullstellen von [mm]f[/mm] gegeben ist. Dies gilt, da für [mm]f(x_0)=0[/mm]
> offensichtlich [mm]x\equiv x_0[/mm] (eindeutige) Lösung des AWPs
> ist.
>  
> Bei (ii) habe ich mir folgendes gedacht:
>  Sei also [mm]x_0[/mm] mit [mm]f(x_0)<0[/mm] und existiere eine Nullstelle
> [mm]x^\ast[/mm] von [mm]f[/mm] links neben [mm]x_0[/mm], dann gilt natürlich
> [mm]dx/dt=f(x)<0[/mm] für [mm]x\in (x^\ast,x_0)[/mm], d.h. [mm]x[/mm] fällt streng
> monoton in diesem Intervall.

O.K.

>  Damit finden wir ein [mm]t^\ast[/mm] so
> groß, dass für [mm]X(t):=x(t)-x^\ast[/mm] gilt: [mm]|n(t)|\ll 1[/mm]

Was ist n(t) ??????


> für
> [mm]t>t^\ast[/mm] und damit können wir linearisieren (+Taylor) und
> erhalten
>  [mm]dX(t)/dt\approx X(t)f'(x^\ast)\quad $\Rightarrow X(t)\propto \exp(f'(x^\ast)t)[/mm]


Was bedeutet  [mm] X(t)\propto \exp(f'(x^\ast)t) [/mm]  ????


FRED

>  
> Nun ist es klar, falls [mm]f[/mm] bei [mm]x^\ast[/mm] einen Vorzeichenwechsel
> hat, damit hier also von - nach + und damit [mm]f'(x^\ast)<0[/mm],
> womit [mm]X(t)\to 0[/mm] und damit [mm]x(t)\to x^\ast[/mm] für [mm]t\to \infty[/mm]
> gilt.
>
> Wenn aber nun aber [mm]f[/mm] die [mm]x[/mm]-Achse an der Stelle [mm]x^\ast[/mm] nur
> berührt? Dann funktioniert das oben ja nicht?
>  
> Würde mich sehr über Hilfe freuen
>  
> Liebe Grüße
>  DudiPupan


Bezug
                
Bezug
Gew. aut. DGL - Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:04 Di 21.04.2015
Autor: DudiPupan

Halo Fred,

> > First-oder autonomus initial value problem:
>  >  [mm]\dot x=f(x),\quad x(0)=x_0,[/mm]
>  >  where [mm]f[/mm] is such that
> the
> > solutions are unique (e.g. [mm]f\in C^1[/mm]).
>  >  (i) If [mm]f(x_0)=0[/mm]
> then
> > [mm]x(t)=x_0[/mm] for all [mm]t[/mm].
>  >  (ii) If [mm]f(x_0)\neq 0[/mm], then [mm]x(t)[/mm] converges to the first
> > zero left ([mm]f(x_0)<0[/mm]) respectively right ([mm]f(x_0)>0[/mm]) of [mm]x_0[/mm].
> > If there ist no such zero the solution converges to
> > [mm]-\infty[/mm], respectively [mm]\infty[/mm].
>  >  
> > Guten Abend zusammen,
>  >  
> > ich muss für eine Präsentation die oben stehenden
> > Aussagen beweisen und bin mir bei (ii) etwas unsicher.
>  >  
> > (i) Ist klar. Hier ist ja die Aussage einfach, dass die
> > Ruhelage einer autonomen gew. DGL 1. Ord. schon durch die
> > Nullstellen von [mm]f[/mm] gegeben ist. Dies gilt, da für [mm]f(x_0)=0[/mm]
> > offensichtlich [mm]x\equiv x_0[/mm] (eindeutige) Lösung des AWPs
> > ist.
>  >  
> > Bei (ii) habe ich mir folgendes gedacht:
>  >  Sei also [mm]x_0[/mm] mit [mm]f(x_0)<0[/mm] und existiere eine Nullstelle
> > [mm]x^\ast[/mm] von [mm]f[/mm] links neben [mm]x_0[/mm], dann gilt natürlich
> > [mm]dx/dt=f(x)<0[/mm] für [mm]x\in (x^\ast,x_0)[/mm], d.h. [mm]x[/mm] fällt streng
> > monoton in diesem Intervall.
>  
> O.K.
>  
> >  Damit finden wir ein [mm]t^\ast[/mm] so

> > groß, dass für [mm]X(t):=x(t)-x^\ast[/mm] gilt: [mm]|n(t)|\ll 1[/mm]
>
> Was ist n(t) ??????

Oh, das ist ein Tippfehler. Sollte natürlich [mm] $|X(t)|\ll [/mm] 1$ heißen.

>  
>
> > für
> > [mm]t>t^\ast[/mm] und damit können wir linearisieren (+Taylor) und
> > erhalten
>  >  [mm]dX(t)/dt\approx X(t)f'(x^\ast)\quad $\Rightarrow X(t)\propto \exp(f'(x^\ast)t)[/mm]
>  
>
> Was bedeutet  [mm]X(t)\propto \exp(f'(x^\ast)t)[/mm]  ????

Das soll heißen, dass sich $X(t)$ propotrional zu $  [mm] \exp(f'(x^\ast)t)$ [/mm] verhält.

>  
>
> FRED
>  >  
> > Nun ist es klar, falls [mm]f[/mm] bei [mm]x^\ast[/mm] einen Vorzeichenwechsel
> > hat, damit hier also von - nach + und damit [mm]f'(x^\ast)<0[/mm],
> > womit [mm]X(t)\to 0[/mm] und damit [mm]x(t)\to x^\ast[/mm] für [mm]t\to \infty[/mm]
> > gilt.
> >
> > Wenn aber nun aber [mm]f[/mm] die [mm]x[/mm]-Achse an der Stelle [mm]x^\ast[/mm] nur
> > berührt? Dann funktioniert das oben ja nicht?
>  >  
> > Würde mich sehr über Hilfe freuen
>  >  
> > Liebe Grüße
>  >  DudiPupan
>  

Und vielen Dank für deine schnelle Antwort.

Liebe Grüße
Dudi

Bezug
                        
Bezug
Gew. aut. DGL - Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:01 Di 21.04.2015
Autor: DudiPupan


> > > Bei (ii) habe ich mir folgendes gedacht:
>  >  >  Sei also [mm]x_0[/mm] mit [mm]f(x_0)<0[/mm] und existiere eine
> Nullstelle
> > > [mm]x^\ast[/mm] von [mm]f[/mm] links neben [mm]x_0[/mm], dann gilt natürlich
> > > [mm]dx/dt=f(x)<0[/mm] für [mm]x\in (x^\ast,x_0)[/mm], d.h. [mm]x[/mm] fällt streng
> > > monoton in diesem Intervall.

Oder ist es hier vielleicht besser mit Monotonie und Beschränktheit zu argumentieren?

Denn gäbe es hier einen Zeitpunkt [mm] $t^\ast$ [/mm] mit [mm] $x(t^\ast)=x^\ast$, [/mm] dann wäre [mm] $\bar{x}(t):=x(t+t^\ast)$ [/mm] die Lösung der DGL [mm] $\frac{d\bar{x}}{dt}(t)=\frac{dx}{dt}(t+t^\ast)=f(x(t+t^\ast))=f(\bar{x}(t))$ [/mm] und damit müsste nach (i) gelten [mm] $\bar{x}(t)= x^\ast$ [/mm] für alle t und damit auch [mm] $x\equiv x^\ast$. [/mm] Dies ist nun aber ein Widerspruch zu [mm] $f(x_0)\neq [/mm] 0$, da dann [mm] $f(x_0)=f( x^\ast)=0. [/mm]
Damit gilt [mm] $x(t)>x^\ast$ [/mm] und da $x$ für [mm] $x^\ast
Ich denke dieser Ansatz wird sinnvoller sein, als der erste den ich hatte mit der Linearisierung.

Würde mich sehr über ein Feedback freuen

Vielen Dank

Liebe Grüße
Dudi

Bezug
                                
Bezug
Gew. aut. DGL - Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 22.04.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Gew. aut. DGL - Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 22.04.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]