matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisGrenzwert Berechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Grenzwert Berechnung
Grenzwert Berechnung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Berechnung: Tipp Idee
Status: (Frage) beantwortet Status 
Datum: 16:00 Di 02.06.2015
Autor: WIM2

Aufgabe
Berechnen sie den Grenzwert:

[mm] \limes_{h\rightarrow\0} \bruch{sin(\bruch{\pi}{3}+4000h)-sin(\bruch{\pi}{3}+10h)}{h} [/mm]

(h gegen 0)

a) Ohne Differentialrechnung
b) mit l'Hospital


Hallo,

a) Wie finde ich den Grenzwert? Er wird vermutlich nie größer als 2 oder -2 sein und gegen unendlich kleiner werden. Aber gegen 0?

zu b) stimmt der Grenzwert von 0 bei h gegen 0?

Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Di 02.06.2015
Autor: abakus


> Berechnen sie den Grenzwert:

>

> [mm]\limes_{n\rightarrow\0} \bruch{sin(\bruch{\pi}{3}+4000h)-sin(\bruch{\pi}{3}+10h)}{h}[/mm]

>

> (n gegen 0)

>

> a) Ohne Differentialrechnung
> b) mit l'Hospital
> Hallo,

>

> a) Wie finde ich den Grenzwert? Er wird vermutlich nie
> größer als 2 oder -2 sein und gegen unendlich kleiner
> werden. Aber gegen 0?

>

> zu b) stimmt der Grenzwert von 0 bei n gegen 0?

>

> Gruß

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
bitte korrigiere die Aufgabenstellung.
h?
n?
Verwende dann im Zähler das Additionstheorem für den Sinus
(also sin(x+y)=sin(x)cos(y)+cos(x)sin(y) ).
Gruß Abakus

Bezug
                
Bezug
Grenzwert Berechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Di 02.06.2015
Autor: WIM2

Danke, ich werde es so mal versuchen.

gruß

Bezug
        
Bezug
Grenzwert Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Di 02.06.2015
Autor: fred97


> Berechnen sie den Grenzwert:
>  
> [mm]\limes_{h\rightarrow\0} \bruch{sin(\bruch{\pi}{3}+4000h)-sin(\bruch{\pi}{3}+10h)}{h}[/mm]
>  
> (h gegen 0)
>  
> a) Ohne Differentialrechnung
>  b) mit l'Hospital
>  
> Hallo,
>  
> a) Wie finde ich den Grenzwert? Er wird vermutlich nie
> größer als 2 oder -2 sein und gegen unendlich kleiner
> werden. Aber gegen 0?
>  
> zu b) stimmt der Grenzwert von 0 bei h gegen 0?

Nein. Der Grenzwert =1995

Fred

>
> Gruß
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Grenzwert Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 02.06.2015
Autor: WIM2

Könnte mir jemand bitte noch mal ansatzweise zeigen, wie man auf 1995 kommt ohne die Regeln von L'Hospital? Habe mithilfe des Additionsthereom möglichst weit aufgelöst, sehe aber nicht wie ich von dort aus auf den Grenzwert kommen soll..
Rechenregeln zu Sinus und Kosinus helfen mir auch nicht wirklich weiter

[mm] \bruch{sin(\bruch{\pi}{3})(cos(4000h)+cos(10h))+cos(\bruch{\pi}{3})(sin(10h)+sin(4000h))}{h} [/mm]

Und weiter? Dafür reicht momentan leider mein Grenzwert nicht aus^^

Gruß

Bezug
                        
Bezug
Grenzwert Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Di 02.06.2015
Autor: chrisno

Mein Ziel war, das auf den Grenzwert von [mm] $\bruch{\sin(x)}{x}$ [/mm] zurück zu führen. Für den Grenzwert kannst Du den Faktor vor dem h vor den Sinus ziehen (musst Du natürlich beweisen). Dann stören noch die Terme mit cos(...h) Die kannst Du zusammenfassen. Dann steht da ein Produkt von Sinusfunktionen. Nachdem Du gezeigt hast, dass [mm] $\bruch{\sin^2(x)}{x}$ [/mm] gegen Null geht, hast Du es geschafft.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3m 6. Pacapear
SProzMatr/Stochastische Prozesse
Status vor 1h 33m 12. sancho1980
MSons/Umformung
Status vor 1h 55m 3. Windbeutel
LaTeX/Silbentrennung
Status vor 10h 09m 11. HJKweseleit
UStoc/Würfel
Status vor 14h 10m 21. Al-Chwarizmi
S8-10/Umkreisradius von Polygon
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]