matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwert beweisen
Grenzwert beweisen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert beweisen: Wie beweise ich das?
Status: (Frage) beantwortet Status 
Datum: 13:15 So 14.09.2014
Autor: sick_of_math

Aufgabe
Sei [mm] $a\in\mathbb{R}$. [/mm] Beweise, dass [mm] $\lim_{n\to\infty}\frac{a^n}{n!}=0$. [/mm]

Benutzen Sie anschließend dieses Resultat um zu beweisen, dass die Folge [mm] $(b_n)$ [/mm] mit [mm] $b_n=\sqrt[n]{n!}$ [/mm] divergiert.

Hallo und einen schönen Sonntag,

ich habe Schwierigkeiten, diese Aufgabe zu lösen.

Wie kann ich zeigen, dass [mm] $\frac{a^n}{n!}\to [/mm] 0$?

Ein Tipp wäre klasse.

        
Bezug
Grenzwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 So 14.09.2014
Autor: Ladon

Hallo sick_of_math,

benutze doch die Stirling'sche Formel:
[mm] \forall n\in\IN: [/mm]
[mm] \sqrt{2\pi n}\cdot(\frac{n}{e})^n\cdot e^{\frac{1}{12n+1}} Ferner gilt: [mm] \lim_{n\to\infty}\frac{n!}{\sqrt{2\pi n}\cdot(\frac{n}{e})^n}=1. [/mm]

Damit kannst du eine entsprechend gute Abschätzung durchführen.

MfG
Ladon

Bezug
        
Bezug
Grenzwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 So 14.09.2014
Autor: hippias

Ladons Tip ist sehr gut. Aber solltest Du die Stirling'sche Formel nicht anwenden wollen, so koennte auch folgende Beobachtung helfen: [mm] $a^{n}$ [/mm] ist ein Produkt von $n$ Faktoren und ebenso $n!$. Wenn $n>a$ ist, dann tauchen in $n!$ Faktoren auf, die groesser als $a$ sind. Damit laesst sich der Quotient ganz gut so abschaetzen, dass man die Behauptung erkennt.

Bezug
        
Bezug
Grenzwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 So 14.09.2014
Autor: abakus


> Sei [mm]a\in\mathbb{R}[/mm]. Beweise, dass
> [mm]\lim_{n\to\infty}\frac{a^n}{n!}=0[/mm].

>

> Benutzen Sie anschließend dieses Resultat um zu beweisen,
> dass die Folge [mm](b_n)[/mm] mit [mm]b_n=\sqrt[n]{n!}[/mm] divergiert.
> Hallo und einen schönen Sonntag,

>

> ich habe Schwierigkeiten, diese Aufgabe zu lösen.

>

> Wie kann ich zeigen, dass [mm]\frac{a^n}{n!}\to 0[/mm]?

Hallo,
[mm]\frac{a^n}{n!}=\frac{a}{1}*\frac{a}{2}*...*\frac{a}{n}[/mm]
Die Beträge der verwendeten Faktoren werden von vorn nach hinten immer kleiner, und für n gegen unendlich geht der Bruch [mm]\frac{a}{n}[/mm] gegen Null.
Je nach verwendetem a ist eine gewisse Anzahl von Faktoren anfangs größer als 1, aber diese Anzahl ist endlich (und somit ist das Produkt aller Faktoren, die noch größer als 1 sind, beschränkt.
Irgendwann kommen nur noch Faktoren, die kleiner als 1 sind, also sinkt die Folge der Produkte dann (und geht letztendlich gegen Null).
Gruß Abakus

Bezug
        
Bezug
Grenzwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Mo 15.09.2014
Autor: fred97

Für a=0 ist die Sache klar. Sei also a [mm] \ne [/mm] 0 und  [mm] a_n:= \frac{a^n}{n!}. [/mm]

Zeige:

1. [mm] \bruch{a_{n+1}}{a_n}= \bruch{a}{n+1}. [/mm]

2. Es ex. ein N [mm] \in \IN [/mm] mit: | [mm] \bruch{a_{n+1}}{a_n}| \le \bruch{1}{2} [/mm]  für alle n [mm] \ge [/mm] N.

3. [mm] (a_n) [/mm] ist eine Nullfolge.


FRED

Bezug
        
Bezug
Grenzwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Mo 15.09.2014
Autor: Marcel

Hallo,

> Sei [mm]a\in\mathbb{R}[/mm]. Beweise, dass
> [mm]\lim_{n\to\infty}\frac{a^n}{n!}=0[/mm].

sehr einfach: die Reihe

    [mm] $\sum_{n=0}^\infty \frac{a^n}{n!}$ [/mm]

konvergiert. Daraus folgt die Behauptung wegen des Trivialkriteriums.

Gruß,
  Marcel

Bezug
                
Bezug
Grenzwert beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:18 Mo 15.09.2014
Autor: reverend

Hallo,

> > Sei [mm]a\in\mathbb{R}[/mm]. Beweise, dass
> > [mm]\lim_{n\to\infty}\frac{a^n}{n!}=0[/mm].
>  
> sehr einfach: die Reihe
>  
> [mm]\sum_{n=0}^\infty \frac{a^n}{n!}[/mm]
>  
> konvergiert.

PS: Das ist mit dem Quotientenkriterium leicht zu zeigen.

Grüße
reverend

> Daraus folgt die Behauptung wegen des
> Trivialkriteriums.
>  
> Gruß,
>    Marcel


Bezug
                        
Bezug
Grenzwert beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Mo 15.09.2014
Autor: Marcel

Hallo,

> Hallo,
>  
> > > Sei [mm]a\in\mathbb{R}[/mm]. Beweise, dass
> > > [mm]\lim_{n\to\infty}\frac{a^n}{n!}=0[/mm].
>  >  
> > sehr einfach: die Reihe
>  >  
> > [mm]\sum_{n=0}^\infty \frac{a^n}{n!}[/mm]
>  >  
> > konvergiert.
>
> PS: Das ist mit dem Quotientenkriterium leicht zu zeigen.

richtig. Aber wer

    [mm] $\exp(z)=\sum_{k=0}^\infty \frac{z^k}{k!}$ [/mm] ($z [mm] \in \IC$) [/mm]

kennt, der weiß das eh. ;-)

Gruß,
  Marcel

Bezug
        
Bezug
Grenzwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Mo 15.09.2014
Autor: Marcel

Hallo,

> Sei [mm]a\in\mathbb{R}[/mm]. Beweise, dass
> [mm]\lim_{n\to\infty}\frac{a^n}{n!}=0[/mm].

noch eine Möglichkeit:
Wegen

    [mm] $|a^n|=|a|^n$ [/mm]

und weil die Behauptung für [mm] $a=0\,$ [/mm] klar ist, können wir o.E. $a > [mm] 0\,$ [/mm] annehmen.

Dann gilt

    [mm] $\ln \frac{a^n}{n!}=\ln(a^n)-\ln(n!)=n*\ln(a)-\sum_{k=1}^n \ln(k)=\sum_{k=1}^n (\ln(a)-\ln(k))\,.$ [/mm]

Daraus folgt

    [mm] $\ln \frac{a^n}{n!} \to -\infty$ [/mm] bei $n [mm] \to \infty\,,$ [/mm]

was

    $0 < [mm] a^n/n! \to [/mm] 0$ (beachte, dass o.E. $a > [mm] 0\,$ [/mm] angenommen wurde)

zur Folge hat.

Das Ganze ähnelt natürlich dem Vorgehen mit dem Produkt, wo man Dir
auch schon Tipps für gegeben hat.  

Gruß,
  Marcel

Bezug
        
Bezug
Grenzwert beweisen: Tipp zum 2. Teil
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:31 Mo 15.09.2014
Autor: Marcel

Hallo,

> Sei [mm]a\in\mathbb{R}[/mm]. Beweise, dass
> [mm]\lim_{n\to\infty}\frac{a^n}{n!}=0[/mm].
>  
> Benutzen Sie anschließend dieses Resultat um zu beweisen,
> dass die Folge [mm](b_n)[/mm] mit [mm]b_n=\sqrt[n]{n!}[/mm] divergiert.

angenommen, es würde doch gelten

    [mm] $b_n \to b\,.$ [/mm]

1. Der Fall $b [mm] \ge [/mm] 0$ kommt nicht in Frage:
Andernfalls gilt sicherlich  

    [mm] $b_n [/mm] < b+1$ für alle bis auf endlich viele [mm] $n\,.$ [/mm]

Dies hat

    [mm] $\frac{b+1}{b_n} [/mm] > 1$ für alle bis auf endlich viele [mm] $n\,$ [/mm]

zur Folge. Was folgt dann für

    [mm] $\lim_{n \to \infty}\left(\frac{b+1}{b_n}\right)^n$? [/mm]

Passt das noch zu der vorher bewiesenen Aussage?

2. Der Fall $b < [mm] 0\,$ [/mm] kann aber, da durchweg [mm] $b_n \textbf{\red{ ? }}\,0$ [/mm] (ersetze das rote
Fragezeichen passend!) gilt, nicht eintreten.
  
Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]