matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert von Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sequences and series" - Grenzwert von Summe
Grenzwert von Summe < Sequences and series < Real Analysis (Single Variable) < Real Analysis < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Folgen und Reihen"  | ^^ all forums  | ^ Tree of Forums  | materials

Grenzwert von Summe: Frage (beantwortet)
Status: (Question) answered Status 
Date: 01:23 Fr 23/03/2018
Author: Jellal

Guten Abend,

ich bin mir bei dieser Grenzwertbetrachtung nicht ganz sicher, ob das theoretisch 100% richtig ist.

[mm] \limes_{\lambda\rightarrow 0}(-n*log(\lambda)-a-\bruch{1}{\lambda}*b) [/mm] mit a,b,n reelle Zahlen ungleich 0.

Der erste Summand divergiert nun gegen [mm] +\infty, [/mm] der dritte Summand gegen [mm] -\infty. [/mm] Daher kann nicht gleich gesehen werden, ob und wohin die komplette Summe divergiert.

Deswegen schreibe ich um:
[mm] \limes_{\lambda\rightarrow 0}(-n \bruch{log(\lambda)}{\bruch{1}{\lambda}}-\lambda*a-b) [/mm]

Der zweite Term geht gegen 0, also bleibt

...=-n * [mm] \limes_{\lambda\rightarrow 0}\bruch{log(\lambda)}{\bruch{1}{\lambda}} [/mm] -b

Das ist ein Term der Art [mm] \bruch{-\infty}{\infty}. [/mm]
Frage: Darf man hier l'hospital anwenden? Auf Wikipedia stehen nur die Fälle 0/0 oder [mm] \infty/\infty. [/mm]

Mit l'hospital würde folgen:
[mm] ...=-n*\limes_{\lambda\rightarrow 0}\bruch{\bruch{1}{\lambda}}{\bruch{1}{\lambda^{2}}} [/mm] -b= [mm] -n*\limes_{\lambda\rightarrow 0}\lambda [/mm] -b=-b.

Stimmt das so?

Gruß Jellal

        
Bezug
Grenzwert von Summe: Antwort
Status: (Answer) finished Status 
Date: 06:36 Fr 23/03/2018
Author: fred97


> Guten Abend,
>  
> ich bin mir bei dieser Grenzwertbetrachtung nicht ganz
> sicher, ob das theoretisch 100% richtig ist.
>  
> [mm]\limes_{\lambda\rightarrow 0}(-n*log(\lambda)-a-\bruch{1}{\lambda}*b)[/mm]
> mit a,b,n reelle Zahlen ungleich 0.
>  
> Der erste Summand divergiert nun gegen [mm]+\infty,[/mm] der dritte
> Summand gegen [mm]-\infty.[/mm] Daher kann nicht gleich gesehen
> werden, ob und wohin die komplette Summe divergiert.
>  
> Deswegen schreibe ich um:
>  [mm]\limes_{\lambda\rightarrow 0}(-n \bruch{log(\lambda)}{\bruch{1}{\lambda}}-\lambda*a-b)[/mm]


Du hast den obigen Ausdruck nicht umgeformt, sondern mit [mm] \lambda [/mm] multipliziert !

Setze x= 1/ [mm] \lambda, [/mm] nenne den resultierenden Ausdruck f(x) und betrachte [mm] e^{f(x)} [/mm]  für x [mm] \to \infty [/mm]


>  
> Der zweite Term geht gegen 0, also bleibt
>  
> ...=-n * [mm]\limes_{\lambda\rightarrow 0}\bruch{log(\lambda)}{\bruch{1}{\lambda}}[/mm]
> -b
>  
> Das ist ein Term der Art [mm]\bruch{-\infty}{\infty}.[/mm]
>  Frage: Darf man hier l'hospital anwenden? Auf Wikipedia
> stehen nur die Fälle 0/0 oder [mm]\infty/\infty.[/mm]
>  
> Mit l'hospital würde folgen:
>  [mm]...=-n*\limes_{\lambda\rightarrow 0}\bruch{\bruch{1}{\lambda}}{\bruch{1}{\lambda^{2}}}[/mm]
> -b= [mm]-n*\limes_{\lambda\rightarrow 0}\lambda[/mm] -b=-b.
>  
> Stimmt das so?
>  
> Gruß Jellal


Bezug
                
Bezug
Grenzwert von Summe: Frage (beantwortet)
Status: (Question) answered Status 
Date: 20:33 Fr 23/03/2018
Author: Jellal

Hallo Fred,

stimmt, du hast Recht!! Vielen Dank.
Den Trick kannte ich gar nicht.

Aber an sich stimmt es schon, dass man im ursprünglichen Term nichts über Konvergenz oder Divergenz sagen konnte, oder?
Und was ist mit l'hospital bei [mm] -\infty [/mm] / [mm] \infty? [/mm]

Bezug
                        
Bezug
Grenzwert von Summe: Antwort
Status: (Answer) finished Status 
Date: 23:56 Fr 23/03/2018
Author: Diophant

Hallo,

siehe meine Mitteilung. Ob du aus dem gegebenen Term den Grenzwert direkt ersehen kannst, hängt davon ab, ob die Vorzeichen von n und b gleich oder unterschiedlich sind.

[mm] \lambda>0 [/mm] ergibt sich ja aus dem Definitionsbereich der Logarithmusfunktion. Also hängt es von den Vorzeichen von n und b ab, ob überhaupt der nicht definierbare Fall [mm] \infty-\infty [/mm] eintritt oder nicht.

Und nein: diesen Fall kann man nicht (ohne Umformung) mit der Regel von de l'Hospital behandeln, denn diese gilt (streng genommen) nur für den Fall 0/0.

Jedenfalls führt der Ansatz von FRED auf jeden Fall zu der Erkenntnis, dass der Grenzwert nicht Null sein kann.


Gruß, Diophant

Bezug
        
Bezug
Grenzwert von Summe: Mitteilung
Status: (Statement) No reaction required Status 
Date: 23:45 Fr 23/03/2018
Author: Diophant

Hallo,

du schreibst

[mm]a, b, n\in\IR[/mm]

(und alle ungleich Null).

Dann muss man aber meiner Ansicht eine Fallunterscheidung für die Vorzeichen von n und b machen. Sofern man den (uneigentlichen) Grenzwert bestimmen möchte zumindest.

Wenn es wirklich nur darum geht, zu zeigen, dass der Grenzwert ungleich Null ist, dann mache es genau so, wie FRED es vorgeschlagen hat.


Gruß, Diophant



Bezug
                
Bezug
Grenzwert von Summe: Mitteilung
Status: (Statement) No reaction required Status 
Date: 02:07 Sa 24/03/2018
Author: Jellal

Hallo Diophant,

ja, die Vorzeichen kenne ich, da a und b kompliziertere Terme (konstant mit bekanntem Vorzeichen) sind. Ich habe wieder mal versucht sinnvoll zu abstrahieren, aber die VZ hätte ich schon angeben sollen.

Danke für den Hinweis!

Bezug
View: [ threaded ] | ^ Forum "Folgen und Reihen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 7m 2. fred97
SIntRech/Stammfunktion anschaulich
Status vor 3h 29m 10. sancho1980
ULinASon/Lineare Optimierung
Status vor 5h 32m 1. Rocky1994
UFina/Kapitalwertmethode
Status vor 11h 13m 5. Gonozal_IX
ULinASon/Lineare Abhängigkeit
Status vor 11h 42m 2. Gonozal_IX
UStoc/Markov Kette: Definitionen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]