matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwertermittlung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Grenzwertermittlung
Grenzwertermittlung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertermittlung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:01 Di 20.03.2018
Autor: Swienny

Aufgabe
[mm] \limes_{x\rightarrow\infty} (3x^7-4x^5+2x^2-x+5)/(4-2x+5x^3-15x^7) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Guten Morgen zusammen :)

Ich muss den Grenzwert x gegen +unendlich finden:
[mm] \limes_{x\rightarrow\infty} (3x^7-4x^5+2x^2-x+5)/(4-2x+5x^3-15x^7) [/mm]

Die Lösungsmöglichkeiten Eingabe in TR oder Erstellen einer Wertetabelle habe ich bereits gemacht, das Ergebnis ist also bekannt. Ich möchte aber auch die algebraische Lösung verstehen. Bitte helft mir dabei, ich hänge leider schon beim Einstieg, wie ich an die Sache herangehen muß. Vielen Dank und Grüße

        
Bezug
Grenzwertermittlung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Di 20.03.2018
Autor: fred97


> [mm]\limes_{x\rightarrow\infty} (3x^7-4x^5+2x^2-x+5)/(4-2x+5x^3-15x^7)[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Guten Morgen zusammen :)
>  
> Ich muss den Grenzwert x gegen +unendlich finden:
>  [mm]\limes_{x\rightarrow\infty} (3x^7-4x^5+2x^2-x+5)/(4-2x+5x^3-15x^7)[/mm]
>  
> Die Lösungsmöglichkeiten Eingabe in TR oder Erstellen
> einer Wertetabelle habe ich bereits gemacht, das Ergebnis
> ist also bekannt. Ich möchte aber auch die algebraische
> Lösung verstehen. Bitte helft mir dabei, ich hänge leider
> schon beim Einstieg, wie ich an die Sache herangehen muß.
> Vielen Dank und Grüße

In  [mm] \frac{(3x^7-4x^5+2x^2-x+5)}{(4-2x+5x^3-15x^7)} [/mm] klammere in Zähler und Nenner jeweils [mm] x^7 [/mm] aus, kürze dann [mm] x^7 [/mm] aus dem resultierende Bruch und Du solltest ablesen können, das der gesuchte Grenzwert $=- [mm] \frac{3}{15}$ [/mm] ist.


Bezug
                
Bezug
Grenzwertermittlung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:26 Di 20.03.2018
Autor: Swienny

Erstmal vielen Dank für die Antwort.

Ich hätte noch zwei Fragen:

1. ist mein Verständnis richtig:
in diesem speziellen Fall (speziell weil der höchste Grad im Zähler und im Nenner identisch ist) stehen durch das Ausklammern der höchsten Potenz im Zähler und Nenner die Zahlen 3 im Zähler und -15 im Nenner sowie die anderen Terme als Bruch, wobei dort jeweils der Nenner [mm] x^7 [/mm] ist. Das wiederum bedeutet das der Nenner [mm] (x^7) [/mm] in jedem dieser Terme größer als der Zähler ist und daher das Ergebnis für diese Terme jeweils null ist. Diese Terme "fallen dadurch raus" und es verbleibt letzten Endes 3/-15

2. Dieser Ansatz funktioniert nur wenn es zum Einen X gegen +unendlich geht und zum Anderen der höchste Grad im Zähler und Nenner identisch ist. Bei einer anderen Konstellation muß ich einen anderen Lösungsweg finden.

Vielen Dank nochmals!

Bezug
                        
Bezug
Grenzwertermittlung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Di 20.03.2018
Autor: fred97


> Erstmal vielen Dank für die Antwort.
>  
> Ich hätte noch zwei Fragen:
>  
> 1. ist mein Verständnis richtig:
> in diesem speziellen Fall (speziell weil der höchste Grad
> im Zähler und im Nenner identisch ist) stehen durch das
> Ausklammern der höchsten Potenz im Zähler und Nenner die
> Zahlen 3 im Zähler und -15 im Nenner sowie die anderen
> Terme als Bruch, wobei dort jeweils der Nenner [mm]x^7[/mm] ist. Das
> wiederum bedeutet das der Nenner [mm](x^7)[/mm] in jedem dieser
> Terme größer als der Zähler ist und daher das Ergebnis
> für diese Terme jeweils null ist. Diese Terme "fallen
> dadurch raus" und es verbleibt letzten Endes 3/-15

Ja, kurz, nach dem Motto: ist a [mm] \ne [/mm] 0 und p>1, so gilt [mm] \frac{a}{x^p} \to [/mm] 0 für x [mm] \to \infty. [/mm]


>  
> 2. Dieser Ansatz funktioniert nur wenn es zum Einen X gegen
> +unendlich geht und zum Anderen der höchste Grad im
> Zähler und Nenner identisch ist. Bei einer anderen
> Konstellation muß ich einen anderen Lösungsweg finden.

Ist Zählergrad = Nennergrad, so funktioniert das auch für $x [mm] \to [/mm] - [mm] \infty$. [/mm]

Ist Zählergrad > Nennergrad, so funktioniert es auch. Beispiel:

[mm] \frac{x^2+2x+3}{x^4+x^3+5}=\frac{\frac{1}{x^2}+\frac{2}{x^3}+\frac{3}{x^4}}{1+\frac{1}{x^3}+\frac{1}{x^4}} \to \frac{0}{1}=0 [/mm] für $x [mm] \to \pm \infty$. [/mm]

Verallgemeinerung: sind p und q Polynome und ist grad p < grad q, so haben wir

[mm] \frac{p(x)}{q(x)} \to [/mm] 0 für $x [mm] \to \pm \infty$. [/mm]

>  
> Vielen Dank nochmals!


Bezug
                                
Bezug
Grenzwertermittlung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Di 20.03.2018
Autor: Swienny

Mega, vielen Dank! Das hat mir sehr geholfen.
Gruß, Swienny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 51m 2. Al-Chwarizmi
DiffGlGew/Erstes Integral
Status vor 3h 0m 9. Diophant
UStoc/Stochastische Unabhängigkeit
Status vor 5h 15m 4. Al-Chwarizmi
UAlgGRK/Menge in der Potenz
Status vor 13h 47m 7. Diophant
STrigoFktn/cos2(x)=sin2(2x)
Status vor 17h 35m 2. fred97
UAnaR1FolgReih/Grenzwertbestimmung a_n
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]