matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Gruppen
Gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:29 Fr 12.05.2017
Autor: Herzblatt

Aufgabe
Beschreibe die folgenden Gruppen
1) [mm] \IZ_{10} \times \IZ_{15} \times \IZ_{20} [/mm]
2) [mm] \IZ_{28} \times \IZ_{42} [/mm]
mit der Form: [mm] \IZ_{d_1}\times .....\times \IZ_{d_m} [/mm] wobei [mm] d_1|d_2|....|d_m [/mm]


Mit dem Chinesischen Restesatz, weiss ich, dass das


[mm] \IZ_{10}\cong \IZ_{2} \times \IZ_{5} [/mm]
und [mm] \IZ_{15}\cong \IZ_{3} \times \IZ_{5} [/mm] und
[mm] \IZ_{20} \cong \IZ_{4} \times \IZ_{5} [/mm]

[mm] \IZ_{10} \times \IZ_{15} \times \IZ_{20}\cong \IZ_{2} \times \IZ_{5} \times \IZ_{3} \times \IZ_{5} \times \IZ_{4} \times \IZ_{5} [/mm]

Nur leider gilt hier nicht 2|5|3|5|4|5....

Was mache ich falsch ?


Liebe Gruesse


        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:01 Fr 12.05.2017
Autor: tobit09

Hallo Herzblatt!


> Mit dem Chinesischen Restesatz, weiss ich, dass das
>  
>
> [mm]\IZ_{10}\cong \IZ_{2} \times \IZ_{5}[/mm]
> und [mm]\IZ_{15}\cong \IZ_{3} \times \IZ_{5}[/mm] und
>  [mm]\IZ_{20} \cong \IZ_{4} \times \IZ_{5}[/mm]
>  
> [mm]\IZ_{10} \times \IZ_{15} \times \IZ_{20}\cong \IZ_{2} \times \IZ_{5} \times \IZ_{3} \times \IZ_{5} \times \IZ_{4} \times \IZ_{5}[/mm]
>  
> Nur leider gilt hier nicht 2|5|3|5|4|5....
>  
> Was mache ich falsch ?

Gar nichts (abgesehen davon, dass du das Ziel der Aufgabe noch nicht erreicht hast).

Es gilt unter Verwendung deiner Überlegung

[mm] $\IZ_{10} \times \IZ_{15} \times \IZ_{20}\cong(\IZ_{5})\times(\IZ_{5}\times\IZ_{2})\times(\IZ_{5}\times\IZ_{4}\times\IZ_{3})$. [/mm]

Wende nun auf die geklammerten Ausdrücke wieder den chinesischen Restsatz (diesmal in "umgekehrter Richtung") an.


Viele Grüße
Tobias

Bezug
                
Bezug
Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:46 Fr 12.05.2017
Autor: Herzblatt


> Hallo Herzblatt!
>  
>
> > Mit dem Chinesischen Restesatz, weiss ich, dass das
>  >  
> >
> > [mm]\IZ_{10}\cong \IZ_{2} \times \IZ_{5}[/mm]
> > und [mm]\IZ_{15}\cong \IZ_{3} \times \IZ_{5}[/mm] und
>  >  [mm]\IZ_{20} \cong \IZ_{4} \times \IZ_{5}[/mm]
>  >  
> > [mm]\IZ_{10} \times \IZ_{15} \times \IZ_{20}\cong \IZ_{2} \times \IZ_{5} \times \IZ_{3} \times \IZ_{5} \times \IZ_{4} \times \IZ_{5}[/mm]
>  
> >  

> > Nur leider gilt hier nicht 2|5|3|5|4|5....
>  >  
> > Was mache ich falsch ?
>  Gar nichts (abgesehen davon, dass du das Ziel der Aufgabe
> noch nicht erreicht hast).
>  
> Es gilt unter Verwendung deiner Überlegung
>  
> [mm]\IZ_{10} \times \IZ_{15} \times \IZ_{20}\cong(\IZ_{5})\times(\IZ_{5}\times\IZ_{2})\times(\IZ_{5}\times\IZ_{4}\times\IZ_{3})[/mm].
>  
> Wende nun auf die geklammerten Ausdrücke wieder den
> chinesischen Restsatz (diesmal in "umgekehrter Richtung")
> an.
>  

ah super, vielen lieben Dank. Ich bekomme dann raus: 5|10|60 und fuer die andere Aufgabe 2|14|42, stimmts?

>
> Viele Grüße
>  Tobias


Bezug
                        
Bezug
Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:10 Fr 12.05.2017
Autor: tobit09


> Ich bekomme dann raus:
> 5|10|60

[ok]


> und fuer die andere Aufgabe 2|14|42, stimmts?

[notok]

Vermutlich hast du irgendwo die "Teilferfremdheits-Voraussetzung" des Chinesischen Restsatzes nicht beachtet.
Um Näheres zu sagen, müsste ich deine Überlegung sehen.


Bezug
                                
Bezug
Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Fr 12.05.2017
Autor: Herzblatt


> > Ich bekomme dann raus:
> > 5|10|60
>  [ok]
>  
>
> > und fuer die andere Aufgabe 2|14|42, stimmts?
>  [notok]
>  
> Vermutlich hast du irgendwo die
> "Teilferfremdheits-Voraussetzung" des Chinesischen
> Restsatzes nicht beachtet.
>  Um Näheres zu sagen, müsste ich deine Überlegung
> sehen.

Ja das stimmt, hab ausversehen [mm] \IZ_{4}\cong \IZ_{2} \times \IZ_{2} [/mm] gesetzt, was natürlich voelliger schwachsinn ist.
Trotzdem komme ich nicht weiter, ich habe mittlerweile:
[mm] \IZ_{28}\cong \IZ_{4} \times \IZ_{7} [/mm]
und
[mm] \IZ_{42}\cong \IZ_{3} \times \IZ_{2} \times \IZ_{7} [/mm]  
aber finde irgendwie nicht die Möglichkeit  4,7,3,2 und 7 so zu mutliplizieren, dass ich auf [mm] d_1|d_2....komme....hast [/mm] du vielleicht einen Tipp?

>  


Bezug
                                        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Fr 12.05.2017
Autor: tobit09


> Trotzdem komme ich nicht weiter, ich habe mittlerweile:
>   [mm]\IZ_{28}\cong \IZ_{4} \times \IZ_{7}[/mm]
>  und
>   [mm]\IZ_{42}\cong \IZ_{3} \times \IZ_{2} \times \IZ_{7}[/mm]

[ok]


> aber finde irgendwie nicht die Möglichkeit  4,7,3,2 und 7
> so zu mutliplizieren, dass ich auf [mm]d_1|d_2....komme....hast[/mm]
> du vielleicht einen Tipp?

Es ist schwer, einen Tipp zu geben, ohne alles zu verraten.
Aber du kannst dir ja weitere analoge Aufgaben ausdenken, an denen du dann übst.

Wähle [mm] $d_1=2*7$ [/mm] und [mm] $d_2=4*3*7$. [/mm]

Wie bin ich darauf gekommen? (Unpräzise erklärt:)
Der Faktor 7 taucht zweimal auf, also muss er in zwei [mm] $d_i$'s [/mm] vorkommen (in den [mm] $d_i$ [/mm] für die größten beiden i).
Der Faktor 3 taucht einmal auf, also muss er in dem [mm] $d_i$ [/mm]  mit dem größten $i$ vorkommen.
Der Faktor 2 taucht in Form von 2 und in Form von [mm] $4=2^2$ [/mm] auf. Also muss das [mm] $d_i$ [/mm] mit dem größten $i$ den Faktor 4 und das [mm] $d_i$ [/mm] mit dem zweitgrößten $i$ den Faktor 2 erhalten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 0m 8. Diophant
ULinAAb/Permutationsgr./ Transposition
Status vor 2h 45m 62. Diophant
MSons/Kann man beim Roulette verlier
Status vor 4h 57m 2. matux MR Agent
DiffGlPar/Abschätzung
Status vor 6h 30m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 6h 57m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]