matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikHypothesentest
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "mathematische Statistik" - Hypothesentest
Hypothesentest < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypothesentest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 So 23.07.2017
Autor: DerPinguinagent

Aufgabe
Sie finden einen ehemals für das Spiel aus Aufgabe 2 verwendeten Würfel aus dem siebzehnten Jahrhundert. Sie würfeln 999 mal und erhalten 133 mal eine sechs. Ist der Würfel fair? Eine Signifikanzzahl von 0,01 soll bei Ihrer Rechnung zugrunde gelegt werden.

Guten Abend,

mein Ansatz ist:

[mm] H_0 [/mm] : Der Würfel ist Fair p=1/6

[mm] H_a: [/mm] Der Würfel ist unfair [mm] p\not=1/6 [/mm]

[mm] Z=\bruch{133/999 - 1/6}{\wurzel{\bruch{1/6*(1-1/6)}{999}}}=-2,84 [/mm]

der dazugehörige p-Wert lautet 0,002

Der Vergleich mit der Signifikanzzahl (beidseitiger Test) ergibt [mm] p\le\alpha [/mm] => [mm] H_0 [/mm] wird verworfen. Der Würfel ist nicht Fair.

Kann das so stimmen?

LG DerPinguinagent

        
Bezug
Hypothesentest: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 So 23.07.2017
Autor: luis52


> Sie finden einen ehemals für das Spiel aus Aufgabe 2
> verwendeten Würfel aus dem siebzehnten Jahrhundert. Sie
> würfeln 999 mal und erhalten 133 mal eine sechs. Ist der
> Würfel fair? Eine Signifikanzzahl von 0,01 soll bei Ihrer
> Rechnung zugrunde gelegt werden.
>  Guten Abend,
>  
> mein Ansatz ist:
>  
> [mm]H_0[/mm] : Der Würfel ist Fair p=1/6
>
> [mm]H_a:[/mm] Der Würfel ist unfair [mm]p\not=1/6[/mm]
>  
> [mm]Z=\bruch{133/999 - 1/6}{\wurzel{\bruch{1/6*(1-1/6)}{999}}}=-2,84[/mm]
>  
> der dazugehörige p-Wert lautet 0,002
>
> Der Vergleich mit der Signifikanzzahl (beidseitiger Test)
> ergibt [mm]p\le\alpha[/mm] => [mm]H_0[/mm] wird verworfen. Der Würfel ist
> nicht Fair.
>  
> Kann das so stimmen?


Moin, fast. Du musst den p-Wert verdoppeln, der Test ist zweiseitig.


Bezug
                
Bezug
Hypothesentest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 So 23.07.2017
Autor: DerPinguinagent

Da der Test zweiseitig ist, habe ich die Signifikanzzahl halbiert. Warum muss ich den p Wert noch verdoppeln?

LG DerPinguinagent

Bezug
                        
Bezug
Hypothesentest: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 So 23.07.2017
Autor: luis52


> Da der Test zweiseitig ist, habe ich die Signifikanzzahl
> halbiert. Warum muss ich den p Wert noch verdoppeln?


Wenn du $ [mm] H_0: [/mm] p=1/6$ gegen $ [mm] H_a: [/mm] p<1/6 $ testest, so verwirst du, wenn $Z_$ kleine Werte annimmt. $Z_$ ist approximativ standardnormalverteilt und somit [mm] $P(Z\le -2.84)\approx0.002$. [/mm] Das ist der zugehoerige p-Wert dieses Tests.

Testest du $ [mm] H_0: [/mm] p=1/6$ gegen $ [mm] H_a: p\ne1/6 [/mm] $, so verwirst du, wenn $Z_$ kleine oder grosse Werte annimmt. Der p-Wert ist dann [mm] $P(Z\le -2.84)+P(Z\ge 2.84)\approx0.004$. [/mm]

Bezug
                                
Bezug
Hypothesentest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 So 23.07.2017
Autor: DerPinguinagent

0,004 muss ich jetzt mit dem Wert 0,005 (wg. 0,01/2) vergleichen oder? Und das funktioniert bei allen zweiseitigen Test so?

LG DerPinguinagent

Bezug
                                        
Bezug
Hypothesentest: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mo 24.07.2017
Autor: luis52


> 0,004 muss ich jetzt mit dem Wert 0,005 (wg. 0,01/2)
> vergleichen oder?

Nein. Ich zitiere von oben:

Der Vergleich mit der Signifikanzzahl ... ergibt $ [mm] p\le\alpha [/mm] $ => $ [mm] H_0 [/mm] $ wird verworfen.

Ich habe die Passage (beidseitiger Test) ausgepunktet, weil so die Entscheidungsregel eines jedes statistischen Tests mittels des p-Wertes formuliert werden kann, gleichgueltig, ob ein- oder zweiseitig.

Hier also: Wegen $ [mm] p=0.004\le0.01=\alpha [/mm] $ wird [mm] $H_0$ [/mm] verworfen.


Bezug
                                                
Bezug
Hypothesentest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Mo 24.07.2017
Autor: DerPinguinagent

Danke!

Bezug
                                                
Bezug
Hypothesentest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:00 So 30.07.2017
Autor: DerPinguinagent

Das Thema bereitet mir wirklich Kopfschmerzen ;-) Zum Testen von Hypothesen hätte ich nochmal eine Frage, die vielleicht absurd ist, mir aber einfach nicht klar wird. Wenn ich ein linksseitigen Test durchführen möchte und ich einen sehr hohen z Wert erhalte bspw. 1,65. Wie bestimme ich dann mein p-Wert.

Ist mein p-Wert P(z<=-1,65) oder P(z<=1,65)  ich würde letzteres nehmen ist das korrekt? Aus einem sehr hohen z-Wert folgt ein hoher p Wert was dazu führt, dass man die Hypothese ggf. verwerfen kann oder halt nicht.

Wenn es falsch ist eine kurze Begründung wäre nett.

LG DerPinguinagent

Bezug
                                                        
Bezug
Hypothesentest: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 So 30.07.2017
Autor: luis52


> Das Thema bereitet mir wirklich Kopfschmerzen ;-) Zum
> Testen von Hypothesen hätte ich nochmal eine Frage, die
> vielleicht absurd ist, mir aber einfach nicht klar wird.
> Wenn ich ein linksseitigen Test durchführen möchte und
> ich einen sehr hohen z Wert erhalte bspw. 1,65. Wie
> bestimme ich dann mein p-Wert.
>
> Ist mein p-Wert P(z<=-1,65) oder P(z<=1,65)  ich würde
> letzteres nehmen ist das korrekt?

[ok]

> Aus einem sehr hohen z-Wert folgt ein hoher p Wert was dazu führt, dass man die
> Hypothese ggf. verwerfen kann oder halt nicht.

[verwirrt] Verstehe ich nicht.


Bezug
                                                                
Bezug
Hypothesentest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:00 So 30.07.2017
Autor: DerPinguinagent

DANKE SCHÖN!

Bezug
                                                                
Bezug
Hypothesentest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 So 30.07.2017
Autor: DerPinguinagent

Hallo,

besteht nochmal die Möglichkeit hier rüber zu schauen?

H0:μ ≥1000 ml
Ha:μ < 1000ml

⇒ linksseitiger Test, da σ unbekannt ⇒ t-Verteilung, x_(mitt)=984,4 und [mm] s_{10} =16,057/\wurzel[2]{10}, \alpha=0,05 [/mm]

[mm] t=\bruch{984,4 - 1000}{16,057/\wurzel[2]{10}} [/mm] =−3,072

Bestimmung der t_schwelle bei 0,05 und df 9 = −1,8331 da linksseitiger Test

Die Hypothese [mm] H_{0} [/mm] wird abgelehnt bei t≤−1,8331. Da t=−3,072 ist wird [mm] H_0 [/mm] verworfen.

Ist das so richtig?

LG DerPinguinagent

PS: Zugrunde liegt die inverse T-Tafel.

Bezug
                                                                        
Bezug
Hypothesentest: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 So 30.07.2017
Autor: luis52


>
> Ist das so richtig?
>

[ok]

Bezug
                                                                                
Bezug
Hypothesentest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 So 30.07.2017
Autor: DerPinguinagent

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 6m 3. Mandy_90
UStoc/Geordnete Stichproben mit Wdh.
Status vor 7m 59. zweidreivier
MSons/Kann man beim Roulette verlier
Status vor 2h 26m 3. matux MR Agent
Logik/Reduktion
Status vor 5h 11m 4. fred97
ULinAAb/Permutationsgr./ Transposition
Status vor 18h 25m 2. UniversellesObjekt
Algebra/Ideale/Lokalisierung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]