matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral Flächeninhalt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integral Flächeninhalt
Integral Flächeninhalt < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral Flächeninhalt: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:50 Fr 16.12.2016
Autor: Schlumpf004

Aufgabe
Bestimmen Sie den Inhalt der Fläche, die durch den Graphen von f und der x-Achse begrenzt wird. Fertigen Sie vorab eine Skizze an.

Hallo,

ich habe eine Frage ich habe gerade das hier ausgerechnet und habe noch ein Fragezeichen im Kopf..

f(x)= [mm] x^{3} [/mm] + [mm] \bruch{1}{2}x^2 [/mm] - [mm] \bruch{5}{2}x [/mm] +1

Habe da als Nullstellen x=1 , x= 0,5 und x= -2 raus.

A= [mm] \integral_{-2}^{0,5}{f(x) dx} [/mm] + [mm] \integral_{0,5}^{1}{f(x) dx} [/mm]
Integriert...

= [mm] \bruch{1}{4}x^4 [/mm] + [mm] \bruch{1}{6}x^3 [/mm] - [mm] \bruch{5}{2}x^2 [/mm] +1x  

Da hab ich dann die Grenzwerte eingesetzt und habe


[mm] \bruch{43}{192} [/mm] - (- [mm] \bruch{13}{3}) [/mm] + [mm] \bruch{43}{192} [/mm] - [mm] \bruch{1}{6} [/mm]

Ergebnis ist = [mm] \bruch{875}{192}+ \bruch{11}{192}= \bruch{443}{96} [/mm]

Das Ergebnis stimmt nur meine frage wäre z.b.  [mm] \bruch{875}{192} [/mm]  da etwas negatives rausgekommen also z.b. [mm] -\bruch{875}{192} [/mm] müsste ich das trotzdem dann positiv rechnen weil das ja eine fläche ist?

        
Bezug
Integral Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Fr 16.12.2016
Autor: Diophant

Hallo,

> Bestimmen Sie den Inhalt der Fläche, die durch den Graphen
> von f und der x-Achse begrenzt wird. Fertigen Sie vorab
> eine Skizze an.
> Hallo,

>

> ich habe eine Frage ich habe gerade das hier ausgerechnet
> und habe noch ein Fragezeichen im Kopf..

>

> f(x)= [mm]x^{3}[/mm] + [mm]\bruch{1}{2}x^2[/mm] - [mm]\bruch{5}{2}x[/mm] +1

>

> Habe da als Nullstellen x=1 , x= 0,5 und x= -2 raus.

>

> A= [mm]\integral_{-2}^{0,5}{f(x) dx}[/mm] + [mm]\integral_{0,5}^{1}{f(x) dx}[/mm]

>

> Integriert...

>

> = [mm]\bruch{1}{4}x^4[/mm] + [mm]\bruch{1}{6}x^3[/mm] - [mm]\bruch{5}{2}x^2[/mm] +1x

>

> Da hab ich dann die Grenzwerte eingesetzt und habe

>
>

> [mm]\bruch{43}{192}[/mm] - (- [mm]\bruch{13}{3})[/mm] + [mm]\bruch{43}{192}[/mm] -
> [mm]\bruch{1}{6}[/mm]

>

> Ergebnis ist = [mm]\bruch{875}{192}+ \bruch{11}{192}= \bruch{443}{96}[/mm]

>

> Das Ergebnis stimmt

Ja, das Ergebnis stimmt, obwohl deine Rechnung falsch ist.

> nur meine frage wäre z.b.
> [mm]\bruch{875}{192}[/mm] da etwas negatives rausgekommen also z.b.
> [mm]-\bruch{875}{192}[/mm] müsste ich das trotzdem dann positiv
> rechnen weil das ja eine fläche ist?

Wenn es um den Flächeninhalt geht, so müssen die Integrale derjenigen Flächenstücke, die unterhalb der x-Achse liegen, negativ in die Rechnung eingehen. Wenn man dies beachtet, so erhält man für eine Fläche niemals einen negativen Wert.
Und genau dieser Fehler ist dir oben unterlaufen. Wobei: vermutlich hast du es beim Rechnen beachtet, jedoch nicht beim Abtippen hier im Forum. Anders ist dein korrektes Resultat nicht zu erklären.

PS: es heißt Grenzen bzw. Schranken, nicht Grenzwerte. Mit letzterem ist etwas anderes gemeint.

Gruß, Diophant

Bezug
                
Bezug
Integral Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:11 Fr 16.12.2016
Autor: Schlumpf004

Welchen Fehler meinst du denn habe es nicht so gut verstanden?

Habe nur einen einzigen tipp Fehler gemacht richtig wäre: [mm] -\bruch{5}{4} [/mm]
habe oben - [mm] \bruch{5}{2} [/mm] geschrieben

?

Bezug
                        
Bezug
Integral Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Fr 16.12.2016
Autor: Diophant

Hallo,

du hast oben ein Plus zwischen den Integralen. Vor dem zweiten Integral muss aber ein Minus stehen, da dieser Flächenanteil ja unterhalb der x-Achse liegt.
Ich habe dann aber nachher auch gesehen, dass schon beim Einsetzen wieder alles richtig war. Also vermutlich wirklich nur ein Tippfehler.

Gruß, Diophant

Bezug
                                
Bezug
Integral Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Fr 16.12.2016
Autor: Schlumpf004

Jetzt habe ich verstanden was du meinst aber wenn ich da minus eingesetzt hätte würde es ja heissen

[mm] \bruch{875}{192} [/mm] - [mm] \bruch{11}{192} [/mm]

= [mm] \bruch{9}{2} [/mm]

wäre das Ergebnis jetzt aber nicht falsch? ://
Sorry hab lange kein Mathe gemacht...

Oder meinst du man schreibt zwar -  [mm] \vmat{ \integral_{0,5}^{1}{f(x) dx} } [/mm]

Aber muss trotzdem positiv sein wegen Betrag Zeichen?

Bezug
                                        
Bezug
Integral Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Fr 16.12.2016
Autor: Diophant

Hallo, rechne nochmal selbst nach. Das zweite Integral sollte für sich alleine einen negativen Wert ergeben, also

[mm] \int_{ \frac{1}{2}}^{1}{(x^3+\frac{1}{2}x^2-\frac{5}{2}x+1) dx}=-\frac{11}{192}[/mm]

Und dieses negative Ergebnis korrigierst du entweder, indem du das ganze Integral mit einem Minuszeichen versiehst, oder mit Betragszeichen, dann aber wieder mit einem Plus davor.

> Jetzt habe ich verstanden was du meinst aber wenn ich da
> minus eingesetzt hätte würde es ja heissen

>

> [mm]\bruch{875}{192}[/mm] - [mm]\bruch{11}{192}[/mm]

>

> = [mm]\bruch{9}{2}[/mm]

>

> wäre das Ergebnis jetzt aber nicht falsch? ://
> Sorry hab lange kein Mathe gemacht...

Kein Problem, ich habe lange kein Matheforum mehr besucht...

Gruß, Diophant

Bezug
                                                
Bezug
Integral Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Fr 16.12.2016
Autor: Schlumpf004

Perfekt danke dir jetzt habe ich meinen Fehler gefunden :)

Habe keine Ahnung wieso aber [mm] \bruch{43}{192} [/mm] - [mm] \bruch{1}{6} [/mm]
gerechnet = [mm] \bruch{11}{192} [/mm]

anstatt...

[mm] \bruch{1}{6} [/mm] - [mm] \bruch{43}{192} [/mm]

= - [mm] \bruch{11}{192} [/mm]

danke dir :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 9m 6. Windbeutel
LaTeX/Graphenverlauf "verfeinern"
Status vor 1h 49m 10. fred97
UAnaR1FolgReih/Weierstraß Approximationssatz
Status vor 12h 20m 4. leduart
USons/Nullstellen
Status vor 12h 51m 5. X3nion
UAnaR1FolgReih/Potenzreihe kompl. Koeff.
Status vor 22h 08m 6. Ice-Man
USons/Lineares Gleichungssystem
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]