matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenIsometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Isometrie
Isometrie < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isometrie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:31 Mo 22.09.2014
Autor: RunOrVeith

Aufgabe
Sei [mm] \phi: \IR^3 \to \IR^3 [/mm] eine Isometrie des euiklidischen Standartraums [mm] \IR^3, [/mm] für die [mm] det(\phi)=-1 [/mm] gilt. Weiter gelten:
[mm] \phi(\vektor{1 \\ 1 \\ 1})=\vektor{-1 \\ -1 \\ -1} [/mm] sowie
[mm] \phi(\vektor{1 \\ 2 \\ 0})=\vektor{0 \\ -1 \\ -2} [/mm]
a) Geben sie eine Orthonormalbasis B von [mm] \IR^3 [/mm] an, sodass die Abbildungsmatrix von [mm] \phi [/mm] Isometrienormalform ist.
b) Geben sie die Abbildungsmatrix an.




Hallo,
mein Ansatz hier wäre:
[mm] \vektor{1 \\ 1 \\ 1} [/mm] ist Eigenvektor zum Eigenwert [mm] -1=\lambda. [/mm]
Weiter ist [mm] cos(\alpha)=\bruch{<\vektor{1 \\ 2 \\ 0},\vektor{0 \\ -1 \\ -2}>}{||\vektor{0 \\ -1 \\ -2}||*||\vektor{1 \\ 2 \\ 0}||}=-\bruch{2}{5} [/mm]
Dann: [mm] cos(\alpha)=\lambda/2, [/mm] also [mm] \lambda=-\bruch{4}{5} [/mm]
und [mm] sin(\alpha)=\wurzel{1-\bruch{\lambda^2}{4}}=\bruch{\wurzel{21}}{5} [/mm]
Dann sollte die Darstellungsmatrix doch
[mm] \pmat{-1 & 0 & 0 \\ 0 & -\bruch{2}{5} & -\bruch{\wurzel{21}}{5} \\ 0 & \bruch{\wurzel{21}}{5} & -\bruch{2}{5}} [/mm] sein.
Die Lösung schaut aber ganz anders aus, die machen das nämlich so:
Der Vektor [mm] v_1 [/mm] = [mm] \vektor{ 1 \\ 1 \\ 1} [/mm] ist Eigenvektor zum EW -1. Der eindimensionale Untervektorraum [mm] [/mm] ist somit [mm] \phi [/mm] invariant, sein orthogonales Komplement [mm] ^\perp [/mm] ebenso. Da [mm] \phi [/mm] Determinante -1 hat, muss seine EInschränkung auf [mm] ^\perp [/mm] Determinante 1 haben, also eine Drehung sein. (Bis hier her ist alles logisch für mich). Es reicht also, [mm] v_1 [/mm] zu einer orthogonalen Basis zu ergänzen und diese dann zu normieren, um eine Basis B zu erhalten, bezüglich der die Darstellungsmatrix von [mm] \phi [/mm] in Isometrienormalform steht.
[mm] v_1 [/mm] = [mm] \vektor{1 \\ 1 \\ 1}, v_2=\vektor{0 \\ 1 \\ -1} [/mm] und [mm] v_3=\vektor{-2 \\ 1 \\ 1} [/mm]
bilden eine orthogonale Basis. Die normierte Version ist dann eine Orthonormalbasis:
[mm] b_1=\bruch{1}{\wurzel{3}}*v_1, b_2 [/mm] = [mm] \bruch{1}{\wurzel{2}}*v_2, b_3=\bruch{1}{\wurzel{6}}*v_3 [/mm]
b) Wir nutzen die Linearität von [mm] \phi [/mm] aus:
[mm] \vektor{0 \\ -1 \\ -2}=\phi(\vektor{1\\2\\0})=\phi(\vektor{0\\1\\-1})+\phi(vektor{1\\1\\1})= \phi(\vektor{0\\1\\-1})-\vektor{1\\1\\1}, [/mm] also:
[mm] \phi(\vektor{0\\1\\-1})=\vektor{0\\-1\\-2}+\vektor{1\\1\\1}=\vektor{1\\0\\-1} [/mm]
Aus Teil a) haben wir gelernt, dass gilt [mm] \phi(b_2)=\bruch{1}{\wurzel{2}}\vektor{1\\0\\-1} \in . [/mm] Da [mm] b_2,b_3 [/mm] orthogonal und normiert sind, gilt [mm] \red{\phi(b_2)= b_2^T*\phi(b_2)*b_2+b_3^T*\phi(b_2)*b_3=0.5b_2-\bruch{\wurzel{3}}{2}b_3} [/mm] <--(das verstehe ich nicht.)
Da nach a) die Abbildungsmatrix in Isometrienormalform vorliegt, sieht sie wie folgt aus:
[mm] \pmat{-1 & 0 & 0 \\ 0 & 0.5 & \bruch{\wurzel{3}}{2} \\ 0 & -\bruch{\wurzel{3}}{2} & 0.5} [/mm]

Ich verstehe bis auf den roten Teil, was hier gemacht wird, aber ich verstehe trotzdem nicht, warum meine Version falsch ist. Außerdem geht das doch nur so schön auf, wenn ich die Basisvektoren genau so wähle, wie sie hier gewählt wurden, oder?
Kann mir jemand helfen? Vielen Dank!

Edit by Mod. Marcel: Ich habe Dir den roten Teil sichtbar gemacht. Innerhalb
von Formeln musst Du [mm] [nomm]$\red{}$[/nomm] [/mm] benutzen!


        
Bezug
Isometrie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 26.09.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]