matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperJacobson-Radikal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Jacobson-Radikal
Jacobson-Radikal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobson-Radikal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Di 26.12.2017
Autor: mimo1

Aufgabe
Zeige: Sei R [mm] \subset [/mm] R' ganz, so gilt [mm] Jac(R)=R\cap [/mm] Jac(R')

Hallo zusammen,

erstmaml zur 1. Inklusion:

[mm] "\subseteq": [/mm] Sei [mm] x\in [/mm] Jac(R) dann ist x max. und [mm] x\in [/mm] Spec(R), dann ex. ein Q [mm] \in [/mm] Spec(R') mit [mm] x=R\cap [/mm] Q und da [mm] R\subset [/mm] R' ist  [mm] Q\in [/mm] Jac(R') also [mm] x\in R\cap [/mm] Jac(R')

[mm] "\supseteq" [/mm] Sei [mm] x\in R\cap [/mm] Jac(R')  [mm] \Rightarrow x\in [/mm] R und [mm] x\in [/mm] Jac(R')
[mm] \Rightarrow xy-1\in (R')^{\*} \forall y\in [/mm] R' [mm] \gdw xy-1\in R^{\*} \forall y\in [/mm] R (da R' ganz über R ist)
[mm] \gdw x\in [/mm] Jac(R)

Stimmt das soweit? Vielen Dank im Voraus.

        
Bezug
Jacobson-Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Di 26.12.2017
Autor: UniversellesObjekt


> Zeige: Sei R [mm]\subset[/mm] R' ganz, so gilt [mm]Jac(R)=R\cap[/mm] Jac(R')
>  Hallo zusammen,
>  
> erstmaml zur 1. Inklusion:
>  
> [mm]"\subseteq":[/mm] Sei [mm]x\in[/mm] Jac(R) dann ist x max. und [mm]x\in[/mm]
> Spec(R),

Was soll das denn heißen? Ein Element von $R$ kann weder "max." sein (was soll das heißen?) noch ein Element vom Spektrum sein.

> dann ex. ein Q [mm]\in[/mm] Spec(R') mit [mm]x=R\cap[/mm] Q und da
> [mm]R\subset[/mm] R' ist  [mm]Q\in[/mm] Jac(R') also [mm]x\in R\cap[/mm] Jac(R')
>  
> [mm]"\supseteq"[/mm] Sei [mm]x\in R\cap[/mm] Jac(R')  [mm]\Rightarrow x\in[/mm] R und
> [mm]x\in[/mm] Jac(R')
>  [mm]\Rightarrow xy-1\in (R')^{\*} \forall y\in[/mm] R' [mm]\gdw xy-1\in R^{\*} \forall y\in[/mm]
> R (da R' ganz über R ist)
>  [mm]\gdw x\in[/mm] Jac(R)
>  
> Stimmt das soweit? Vielen Dank im Voraus.


Bezug
                
Bezug
Jacobson-Radikal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Di 26.12.2017
Autor: mimo1

Da ich ein Element aus dem Jacobson-Radikal nehme und diese als das Durchschnitt aller maximalen Ideale in R ist, ist x maximales Ideal. Und jedes maximiale Ideal auch prim ist folgt daraus, dass [mm] x\in [/mm] Spec(R) (Menge der PRimideale), oder?

Bezug
                        
Bezug
Jacobson-Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Di 26.12.2017
Autor: UniversellesObjekt

Wiederhole, was der Durchschnitt von Mengen ist.

Bezug
                        
Bezug
Jacobson-Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Mi 27.12.2017
Autor: fred97


> Da ich ein Element aus dem Jacobson-Radikal nehme und diese
> als das Durchschnitt aller maximalen Ideale in R ist, ist x
> maximales Ideal.

Aua ! Das tut weh ! Wenn x ein Element des  Jacobson-Radikals ist, so ist x ein Element des Rings. Ein max. Ideal aber ist eine Teilmenge des Rings.

Für x gilt: x ist enthalten in jedem max. Ideal !

> Und jedes maximiale Ideal auch prim ist
> folgt daraus, dass [mm]x\in[/mm] Spec(R) (Menge der PRimideale),
> oder?

x ist in jedem Primideal enthalten !


Bezug
        
Bezug
Jacobson-Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Mi 27.12.2017
Autor: UniversellesObjekt

Um noch etwas zu einer Lösung der Aufgabe zu sagen (aber da fehlt wirklich einiges an Grundlagend, habe ich das Gefühl): Die Sätze von []Cohen-Seidenberg sind sicherlich hilfreich.

Liebe Grüße
UniversellsObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 9h 48m 2. matux MR Agent
SStatHypo/Welche Verfahren wählen?
Status vor 10h 10m 7. Diophant
ULinASon/Lineare Optimierung
Status vor 1d 7h 05m 2. fred97
UAnaR1FunkDiff/Polynomfunktion differenzierba
Status vor 1d 7h 19m 1. Stephan30
Maxima/Indizes zählen mit Funktion
Status vor 1d 8h 55m 1. mathenoob3000
UStoc/Markov Kette: Definitionen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]