matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungKonvexkombination
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Konvexkombination
Konvexkombination < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Mo 22.08.2016
Autor: Mathics

Aufgabe
Für Konvexität gilt, dass falls y [mm] \ge [/mm] x und z [mm] \ge [/mm] x, dann [mm] \alpha [/mm] * y + (1 - [mm] \alpha) [/mm] * z [mm] \ge [/mm] x. mit 0 < [mm] \alpha [/mm] < 1.

Gilt dann auch: y > x und z [mm] \ge [/mm] x, dann [mm] \alpha [/mm] * y + (1 - [mm] \alpha) [/mm] * z > x. ?

Hallo,

wir haben gelernt, dass bei Konvexität die Bessermengen konvex sind, also wenn Alternativen y und z einer Alternative x vorgezogen werden [mm] (\ge), [/mm] dann wird auch jede Mischung (Konvexkombination) zwischen y und z der Alternative x vorgezogen.

Ich habe es grafisch versucht zu zeichnen, und immer wurde die Behauptung erfüllt, also jede Gerade, welche die Punkte y und z verbunden hat, war strikt besser als x.

Ist die Behauptung also richtig?

LG
Mathics

        
Bezug
Konvexkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Mo 22.08.2016
Autor: leduart

Hallo
da [mm] 0<\alpha<=1 [/mm] kann man natürlich [mm] \alpha [/mm] und [mm] 1-\alpha [/mm] austauschen
Gruss leduart

Bezug
                
Bezug
Konvexkombination: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:15 Mo 22.08.2016
Autor: Mathics


>   da0<0 [mm]\alpha<=1[/mm] kann man natürlich [mm]\alpha[/mm] und [mm]10\alpha[/mm]
> austauschen


Hallo leduart,

das habe ich leider nicht verstanden. Könntest du mir den Gedanke näher erläutern?

LG
Mathics

Bezug
                        
Bezug
Konvexkombination: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:37 Di 23.08.2016
Autor: leduart

sorry, in meinem post waren zu viel Tipfehler, jetzt verbessert
Gruß leduart

Bezug
        
Bezug
Konvexkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Mo 22.08.2016
Autor: fred97


> Für Konvexität gilt, dass falls y [mm]\ge[/mm] x und z [mm]\ge[/mm] x, dann
> [mm]\alpha[/mm] * y + (1 - [mm]\alpha)[/mm] * z [mm]\ge[/mm] x. mit 0 < [mm]\alpha[/mm] < 1.
>  
> Gilt dann auch: y > x und z [mm]\ge[/mm] x, dann [mm]\alpha[/mm] * y + (1 -
> [mm]\alpha)[/mm] * z > x. ?
>  Hallo,
>  
> wir haben gelernt, dass bei Konvexität die Bessermengen
> konvex sind, also wenn Alternativen y und z einer
> Alternative x vorgezogen werden [mm](\ge),[/mm] dann wird auch jede
> Mischung (Konvexkombination) zwischen y und z der
> Alternative x vorgezogen.
>
> Ich habe es grafisch versucht zu zeichnen, und immer wurde
> die Behauptung erfüllt, also jede Gerade, welche die
> Punkte y und z verbunden hat, war strikt besser als x.
>  
> Ist die Behauptung also richtig?

Ja. Das kannst Du so sehen: sei also y > x , z $ [mm] \ge [/mm] $ x und  0 < $ [mm] \alpha [/mm] $ < 1.

Dann: [mm] $\alpha [/mm] *y > [mm] \alpha [/mm] *x$ und [mm] $(1-\alpha) [/mm] *z [mm] \ge (1-\alpha) [/mm] *x.$  Somit

    $ [mm] \alpha [/mm]  * y + (1 -  [mm] \alpha) [/mm]  * z > [mm] \alpha [/mm]  * x+ [mm] (1-\alpha)*x=x$ [/mm]

FRED


>  
> LG
>  Mathics


Bezug
                
Bezug
Konvexkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:42 Di 23.08.2016
Autor: Mathics

Eine Funktion wie u=min(x1, x2) ist in einem x1,x2-Diagramm ja L-Förmig, dessen Knickpunkte miteinander verbunden eine steigende Diagonale ergeben würde.

Wäre es auch möglich, dass man eine konvexe Funktion hat mit ebenfalls diesen L-förmigen Kurven, die allerdings ledliglich nach rechts verschoben sind, sodass, wenn man die Knickpunkte verindet, einfach eine Horizontale auf Höhe des Knickpunktes erhält. Das wäre das einzige, was mir einfallen würde, wo der Behauptung widersprochen werden könnte. Ist so etwas aber überhaupt möglich?

Ich habe es unten auch nochmal gezeichnet.

[Dateianhang nicht öffentlich]

LG
Mathics

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Konvexkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Di 23.08.2016
Autor: leduart

Hallo
das ist ja keine Funktion, und deine andere Zuordnung kannst du offensichtlich nur stückweise definieren . Was willst du damit, und was hat das mit deiner Frage nach konvex zu tun?
Gruß leduart

Bezug
        
Bezug
Konvexkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 23.08.2016
Autor: HJKweseleit


> Für Konvexität gilt, dass falls y [mm]\ge[/mm] x und z [mm]\ge[/mm] x, dann
> [mm]\alpha[/mm] * y + (1 - [mm]\alpha)[/mm] * z [mm]\ge[/mm] x. mit 0 < [mm]\alpha[/mm] < 1.
>  
> Gilt dann auch: y > x und z [mm]\ge[/mm] x, dann [mm]\alpha[/mm] * y + (1 -
> [mm]\alpha)[/mm] * z > x. ?

Ja klar!

Deine zweite Aussage entspricht doch genau der ersten, du hast doch nur die Buchstaben vertauscht. Das ist so ähnlich, als wenn du fragst:

Wenn [mm] (a+b)^2 [/mm] = [mm] a^2+2ab+b^2 [/mm] ist, ist dann auch [mm] (c+d)^2 [/mm] = [mm] c^2+2cd+d^2? [/mm]

Oder bezieht sich deine Frage darauf, dass du bei der 2. Aussage nur ein < statt ein [mm] \le [/mm] Zeichen gesetzt hast? Dann ist sie so auch richtig, weil [mm] \alpha [/mm] nicht 0 sein darf (sonst käme heraus z > x, aber wir wissen nur, dass [mm] z\ge [/mm] x ist).

Beweis:

[mm] \alpha [/mm] * y + (1 - [mm] \alpha) [/mm] * z [mm] \ge \alpha [/mm] * y + (1 - [mm] \alpha) [/mm] * x (da 1 - [mm] \alpha \ge [/mm] 0) > [mm] \alpha [/mm] * x + (1 - [mm] \alpha) [/mm] * x (da [mm] \alpha [/mm] > 0) = x


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4m 1. Filza
UAnaRn/Integral berechnen
Status vor 46m 8. Diophant
MSons/Induktion
Status vor 2h 0m 4. Gonozal_IX
UStoc/Verteilungsfunktion
Status vor 2h 37m 2. Diophant
UAnaR1FolgReih/n-te Partialsumme
Status vor 2h 48m 8. sancho1980
MSons/Zeigen, dass Formel gilt
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]