matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieKugeltransfomationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topology and Geometry" - Kugeltransfomationen
Kugeltransfomationen < Topology and Geometry < University < Maths <
View: [ threaded ] | ^ Forum "Topologie und Geometrie"  | ^^ all forums  | ^ Tree of Forums  | materials

Kugeltransfomationen: Kugeloberfläche auf 26 Punkte
Status: (Frage) überfällig Status 
Date: 10:41 Sa 20/01/2018
Author: Science-Guru

Gegeben ist eine Einheitskugel mit einem beliebigen Vektor:
Zielvektor P={X,Y,Z} mit [mm] |P|=√(X^2+Y^2+Z^2 [/mm] )=1
X=sin⁡(θ)*cos⁡(φ)
Y=sin⁡(θ)*sin⁡(φ)
Z=cos⁡(θ)


Ausserdem sind 26 Raumpunkte gegeben (Flächen-, Kanten- und Eck-Punkte des Einheitswürfels - ohne den Ursprung des Koordinatensystems {0, 0, 0}), der die Einheitkugel umschliest, also folgende 26 Raumpunkte:

P_01={-1,-1,-1} ; P_02={-1,-1,0} ; P_03={-1,-1,+1}
P_04={-1,0,-1} ; P_05={-1,0,0} ; P_06={-1,0,+1}
P_07={-1,+1,-1} ; P_08={-1,+1,0} ; P_09={-1,+1,+1}

P_10={0,-1,-1} ; P_11={0,-1,0} ; P_12={0,-1,+1}
P_13={0,0,-1} ;  Ursprung P_05={0,0,0} ; P_14={0,0,+1}
P_15={0,+1,-1} ; P_16={0,+1,0} ; P_17={0,+1,+1}

P_18={+1,-1,-1} ; P_19={+1,-1,0} ; P_20={+1,-1,+1}
P_21={+1,0,-1} ; P_22={+1,0,0} ; P_23={+1,0,+1}
P_24={+1,+1,-1} ; P_25={+1,+1,0} ; P_26={+1,+1,+1}

Jeder der 26 Raumpunkte ist mit einer Wahrscheinlichkeit Wi behaftet. Für diese 26 Wahrscheinlickeitswerte müssen folgende Gleichungen erfüllt sein:

[mm] W_i∈R [/mm]  für i=1 bis 26

[mm] 0≤W_i≤1 [/mm]

[mm] ∑W_i [/mm] = 1  , d.h. [mm] Summe(W_i) [/mm] = 1

W_(+1,+1,+1)+W_(+1,+1,0)+W_(+1,+1,-1)+W_(+1,0,+1)+W_(+1,0,0)+W_(+1,0,-1)+W_(+1,-1,+1)+W_(+1,-1,0)+W_(+1,-1,-1)- (W_(-1,+1,+1)+W_(-1,+1,0)+W_(-1,+1,-1)+W_(-1,0,+1)+W_(-1,0,0)+W_(-1,0,-1)+W_(-1,-1,+1)+W_(-1,-1,0)+W_(-1,-1,-1) )=X=sin⁡(θ)*cos⁡(φ)

Kurzform:
∑(W_(+1,j,k)-W_(-1,j,k) ) = X = sin⁡(θ)*cos⁡(φ)

∑(W_(i,+1,k)-W_(i,-1,k) ) = Y = sin⁡(θ)*sin⁡(φ)

∑(W_(i,j,+1)-W_(i,j,-1) ) = Z = cos⁡(θ)



Anschauliche Beschreibung:

Einzelne Vektoren (Real-Vektoren) können nur in den 26 Raumpunkten des Einheitswürfels realisiert werden und nicht auf der Einheitskugel (dort existieren nur die Ziel-Vektoren). Die Aufgabe ist die Wahrscheinlichkeiten für diese 26 Raumpunkte so zu berechnen, dass bei sehr vielen Realisierungen im Mittel (d.h. beim aufsummieren der realisierten einzelnen Real-Vektoren auf den 26 Raumpunkten) jeder beliebige Vektor (Zielvektor P={X,Y,Z}) auf der Einheitkugel rauskommt.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




attachments:
Attachment # 1 (Type: pdf) [nicht öffentlich]
        
Bezug
Kugeltransfomationen: Fälligkeit abgelaufen
Status: (Statement) No reaction required Status 
Date: 11:20 Di 23/01/2018
Author: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Kugeltransfomationen: Rückfrage
Status: (Statement) No reaction required Status 
Date: 12:20 Di 23/01/2018
Author: Al-Chwarizmi

Hallo Science-Guru,

leider habe ich gewisse Mühe, zu verstehen, was du anstrebst.
Ich kann mir zwar die Verteilung der 26 Punkte im Raum vorstellen
(Analogie:  die Mittelpunkte der 26 Teilwürfelchen, welche man
vermeintlich auf der Oberfläche des Rubik-Würfels sieht).
Ferner habe ich verstanden, dass du offenbar eine Methode
suchst, beliebige Punkte auf der Kugeloberfläche durch
gewisse Linearkombinationen (?) der 26 Grundvektoren
darzustellen.
Weshalb du dann aber von "Wahrscheinlichkeiten" sprichst,
ist mir nicht so ganz klar.
Könntest du deine Idee etwas weiter umschreiben ? Und vor
allem:  Wozu soll das Ganze überhaupt dienen ? Hast du
irgendein praktisches Ziel im Auge ?

LG ,   Al-Chwarizmi

Bezug
View: [ threaded ] | ^ Forum "Topologie und Geometrie"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 11h 51m 2. Diophant
UAnaR1FolgReih/Grenzwert nte Wurzel
Status vor 1d 0h 19m 11. fred97
ULinAMat/Gruppe der inv. Matrizen
Status vor 3d 11. Al-Chwarizmi
STrigoFktn/Cosinus und Arc Cosinus
Status vor 3d 7. Diophant
UAnaR1FunkStetig/Stetigkeit im Nullpunkt
Status vor 5d 1. Prospekthuellen
UStoc/Galton-Watson mit max. Höhe
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]