matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenLagrange Optimierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange Optimierung
Lagrange Optimierung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange Optimierung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:29 Mi 25.01.2017
Autor: NefetsClaxon

Aufgabe
[mm] (x^2y^2z^2) [/mm]

NB: [mm] x^2+y^2+z^2-c [/mm] =0

L = [mm] (x^2y^2z^2)- [/mm] λ [mm] (x^2+y^2+z^2-c) [/mm]

Ich leite partiell nach x,y,z und λ ab.

ich komme dann auf

a) [mm] 2xy^2z^2 [/mm] - 2 λ x
b) [mm] 2x^2yz^2 [/mm] - 2 λ y
c) 2x^2y^2z - 2 λ z
d) [mm] -x^2 [/mm] - [mm] y^2 [/mm] - [mm] z^2 [/mm] +c

Jetzt muss ich ja die Gleichungen jeweils nach x,y,z bzw. λ auflösen oder?

Kommt da nicht überall 0 raus?



        
Bezug
Lagrange Optimierung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Mi 25.01.2017
Autor: Diophant

Hallo,
 [mm](x^2y^2z^2)[/mm]
>

> NB: [mm]x^2+y^2+z^2-c[/mm] =0
> L = [mm](x^2y^2z^2)-[/mm] λ [mm](x^2+y^2+z^2-c)[/mm]

>

Zunächst einmal ist eine solch spartanische Problembeschreibung vor allem für eines gut: dass man sich missversteht. Ich weiß jetzt nicht, was du mit 'Nebenbedingung' hier genau meinst, Tatsache ist jedoch, dass die -c in der Gleichung d) unten nichts zu suchen haben.

> Ich leite partiell nach x,y,z und λ ab.

>

> ich komme dann auf

>

> a) [mm]2xy^2z^2[/mm] - 2 λ x
> b) [mm]2x^2yz^2[/mm] - 2 λ y
> c) 2x^2y^2z - 2 λ z
> d) [mm]-x^2[/mm] - [mm]y^2[/mm] - [mm]z^2[/mm] +c

>

> Jetzt muss ich ja die Gleichungen jeweils nach x,y,z bzw.
> λ auflösen oder?

Nein, du musst die Terme a)-d) gleich Null setzen und das enstehende Gleichungssystem lösen. Dabei musst du bedenken, dass die Gleichung d) noch falsch ist (siehe oben).

>

> Kommt da nicht überall 0 raus?

>

Ja, dem ist so (und das ist auch nicht weiter erstaunlich, da braucht man keinen Lagrange um darauf zu kommen).


Gruß, Diophant

Bezug
                
Bezug
Lagrange Optimierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Mi 25.01.2017
Autor: NefetsClaxon

Danke für die Antwort!

Okay, dann ist die Gleichung d) noch falsch.

Mein Problem ist: Laut Lösung https://www.hsu-hh.de/download-1.5.1.php?brick_id=gWoNamGcUBFZHskT, Aufgabe 1)

sollte da unter anderem x = +/- [mm] \bruch{\wurzel{c}}{\wurzel{3}} [/mm] herauskommen. Wie kann das denn sein?


Bezug
                        
Bezug
Lagrange Optimierung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mi 25.01.2017
Autor: Chris84


> Danke für die Antwort!
>  
> Okay, dann ist die Gleichung d) noch falsch.

Das sehe ich nicht so. Wenn [mm] $g(x,y,z)=x^2+y^2+z^2-c=0$ [/mm] die Nebenbedingung sein soll, dann lautet die letzte Gleichung (es waere uebrigens gut, wenn du wirklich Gleichungen hingeschrieben haettest...)

[mm] $x^2+y^2+z^2-c=0$ [/mm]


>  
> Mein Problem ist: Laut Lösung
> https://www.hsu-hh.de/download-1.5.1.php?brick_id=gWoNamGcUBFZHskT,
> Aufgabe 1)
>  
> sollte da unter anderem x = +/-
> [mm]\bruch{\wurzel{c}}{\wurzel{3}}[/mm] herauskommen. Wie kann das
> denn sein?
>  

Naja, wenn die letzte Gleichung so lautet, wie oben hingeschrieben, kann $x=y=z=0$ doch keine Loesung sein, da sonst eben diese Gleichung nicht erfuellt waere.
Ich sehe da nun irgendwie nicht so das Problem :)

Gruss,
Chris

Bezug
                        
Bezug
Lagrange Optimierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Mi 25.01.2017
Autor: Diophant

Hallo,

> Danke für die Antwort!

>

> Okay, dann ist die Gleichung d) noch falsch.

>

> Mein Problem ist: Laut Lösung
> https://www.hsu-hh.de/download-1.5.1.php?brick_id=gWoNamGcUBFZHskT,
> Aufgabe 1)

>

> sollte da unter anderem x = +/-
> [mm]\bruch{\wurzel{c}}{\wurzel{3}}[/mm] herauskommen. Wie kann das
> denn sein?

Nein (also nein: Gleichung d war doch nicht falsch), jetzt mit dem Link habe ich es verstanden (wäre bei einem vernünftig ausformulierten Startbeitrag nicht passiert).

Wenn du das c in deiner Gleichung d) berücksichtigst, am besten einfach in der Form

[mm] x^2+y^2+z^2=c [/mm]

dann kommt genau das Resultat aus dem Skript heraus. Vermutlich hast du dich beim Lösen des Gleichungssystems verrechnet?


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 19m 8. Diophant
ULinAAb/Permutationsgr./ Transposition
Status vor 5h 03m 62. Diophant
MSons/Kann man beim Roulette verlier
Status vor 7h 16m 2. matux MR Agent
DiffGlPar/Abschätzung
Status vor 8h 48m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 9h 16m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]