matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete OptimierungLineare Optimierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Optimierung" - Lineare Optimierung
Lineare Optimierung < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Optimierung: Simplexverfahren
Status: (Frage) überfällig Status 
Datum: 10:14 Mi 28.01.2015
Autor: Valkyrion

Aufgabe
In einem Lager befinden sich 450 Kisten mit dem Gut C und 660 Kisten mit Gut D. Zur vollständigen Räumung des Lagers stehen 3 LKWs zur Verfügung. Um den LKW-Laderaum optimal auszunutzen, werden diese drei LKWs stets folgendermaßen beladen:
LKW 1: 15 Kisten Gut C & 30 Kisten Gut D
LKW 2: 30 Kisten Gut C & 30 Kisten Gut D
LKW 3: 30 Kisten Gut C & 20 Kisten Gut D

Wie oft muss jeder LKW für die vollständige Räumung fahren?
Zeigen Sie, dass es mehrere Möglichkeiten gibt!
Wie oft muss jeder LKW fahren, wenn alle drei LKWs eingesetzt werden?

Ich würde das mit dem Simplexverfahren lösen!?

Ich komme dabei aber nicht auf genügend (Un)gleichungen:

Die LKWs würde ich als x, y, z setzen:

(I)                15x + 30y + 30z [mm] \le [/mm] 450
(II)               30x + 30y + 20z [mm] \le [/mm] 660
(III = I +II)  45x + 60y + 50z [mm] \le [/mm] 1110

Brauche ich da nicht noch ne weitere Gleichung die Zielfunktion? oder ist meine dritte Gleichung die Zielfunktion? Dann brauch ich aber doch noch ne weitere Gleichung?

        
Bezug
Lineare Optimierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Fr 30.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Lineare Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 Fr 30.01.2015
Autor: Al-Chwarizmi


> In einem Lager befinden sich 450 Kisten mit dem Gut C und
> 660 Kisten mit Gut D. Zur vollständigen Räumung des
> Lagers stehen 3 LKWs zur Verfügung. Um den LKW-Laderaum
> optimal auszunutzen, werden diese drei LKWs stets
> folgendermaßen beladen:
>  LKW 1: 15 Kisten Gut C & 30 Kisten Gut D
>  LKW 2: 30 Kisten Gut C & 30 Kisten Gut D
>  LKW 3: 30 Kisten Gut C & 20 Kisten Gut D
>  
> Wie oft muss jeder LKW für die vollständige Räumung
> fahren?
>  Zeigen Sie, dass es mehrere Möglichkeiten gibt!
>  Wie oft muss jeder LKW fahren, wenn alle drei LKWs
> eingesetzt werden?
>  Ich würde das mit dem Simplexverfahren lösen!?
>  
> Ich komme dabei aber nicht auf genügend (Un)gleichungen:
>  
> Die LKWs würde ich als x, y, z setzen:
>  
> (I)                15x + 30y + 30z [mm]\le[/mm] 450
> (II)               30x + 30y + 20z [mm]\le[/mm] 660
>  (III = I +II)  45x + 60y + 50z [mm]\le[/mm] 1110
>  
> Brauche ich da nicht noch ne weitere Gleichung die
> Zielfunktion? oder ist meine dritte Gleichung die
> Zielfunktion? Dann brauch ich aber doch noch ne weitere
> Gleichung?


Hallo Valkyrion

Wenn ich die Aufgabe richtig verstehe, ist dies gar
nicht unbedingt eine Aufgabe zur linearen Optimierung,
sondern einfach eine Frage zu einem linearen Gleichungs-
system und seiner Lösbarkeit.
Jeder eingesetzte LKW soll bei jeder Fahrt voll nach dem
Ladungsplan beladen werden, d.h. wir haben es nicht
mit Ungleichungen, sondern mit einem linearen Gleichungs-
system (2 Gleichungen für 3 Unbekannte) zu tun.
Das Gleichungssystem ist "überbestimmt", d.h. es
gibt viele Lösungstripel. Diese sollen aber nur aus
nichtnegativen ganzen Zahlen bestehen. Deshalb gibt
es nicht [mm] \infty [/mm] viele, sondern nur eine endliche Anzahl
von Lösungstripeln.

In der Aufgabenstellung erkenne ich keine Angabe
über eine Extremwertaufgabe im Sinne der linearen
Optimierung, also keine "Zielfunktion".

Man könnte aber eine solche einführen, z.B. durch
die Forderung:
"Die Gesamtzahl der LKW-Fahrten soll minimal werden".

Und wenn du magst, kannst du aus den Gleichungen
ein Ungleichungssystem machen, nach dem Prinzip:

    $\ T(x,y,z)\ =\ [mm] C\quad \gdw\quad [/mm]   T(x,y,z)\ [mm] \le\ [/mm] C\ \ [mm] \wedge\ [/mm] \ T(x,y,z)\ [mm] \ge\ [/mm] C$


Vorschlagen würde ich aber, die Idee "Simplexverfahren"
hier außen vor zu lassen.

Noch ein Tipp:

Um handlichere Gleichungen zu erhalten, würde
ich empfehlen, sie soweit möglich zu kürzen !

LG ,    Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 58m 10. HJKweseleit
GraphTheo/Hyperwürfel teilen
Status vor 5h 20m 3. matux MR Agent
UAlgGRK/Ringerweiterung
Status vor 5h 20m 2. Gonozal_IX
MaßTheo/Fast überall
Status vor 6h 39m 3. Schreim
USons/Quasireguläre Hexagone
Status vor 7h 29m 2. Diophant
DiffGlGew/Differentialgleichung lösen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]