matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLineare Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Do 21.09.2017
Autor: James90

Hallo!

Es sei V ein K-VR mit Skalarprodukt $<.,.>$, I eine beliebige Indexmenge und [mm] $(v_i)_{i\in I}$ [/mm] eine orthonormale Folge in V.
Zeigen Sie, dass die Folge [mm] $(v_i)_{i\in I}$ [/mm] linear unabhängig ist.

Mein Versuch:
Sei [mm] $(\lambda_i)_{i\in I}$ [/mm] eine Folge in K mit [mm] \sum_{i\in I}\lambda_i*v_i=0 [/mm]
Auf beiden Seite die (stetige) induzierte Norm: [mm] \|\sum_{i\in I}\lambda_i*v_i\|=\|0\| [/mm]
Normeigenschaft: [mm] \|\sum_{i\in I}\lambda_i*v_i\|=\sum_{i\in I}\lambda_i*\|v_i\|=0 [/mm]
Orthonormale Eigenschaft: [mm] \sum_{i\in I}\lambda_i*1=0 [/mm]
Also: [mm] \lambda_i=0 [/mm] für alle [mm] $i\in [/mm] I$
Also: [mm] (v_i)_{i\in I} [/mm] linear unabhängig

Geht das so?

Vielen Dank!




        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Do 21.09.2017
Autor: luis52

  
> Orthonormale Eigenschaft: [mm]\sum_{i\in I}\lambda_i*1=0[/mm]
>  Also:
> [mm]\lambda_i=0[/mm] für alle [mm]i\in I[/mm]

Moin, der Schluss ist windig. Wieso folgt aus [mm]\sum_{i\in I}\lambda_i=0[/mm], dass [mm]\lambda_i=0[/mm] für alle [mm]i\in I[/mm]? Gegenbeispiel: $3-2-1=0$.

Bestimme mal [mm] $$ [/mm] fuer beliebiges $j$.

Bezug
                
Bezug
Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:39 Fr 22.09.2017
Autor: James90


>  
> > Orthonormale Eigenschaft: [mm]\sum_{i\in I}\lambda_i*1=0[/mm]
>  >  
> Also:
> > [mm]\lambda_i=0[/mm] für alle [mm]i\in I[/mm]
>  
> Moin, der Schluss ist windig. Wieso folgt aus [mm]\sum_{i\in I}\lambda_i=0[/mm],
> dass [mm]\lambda_i=0[/mm] für alle [mm]i\in I[/mm]? Gegenbeispiel: [mm]3-2-1=0[/mm].

Danke, das war echt blöd!

> Bestimme mal [mm][/mm]
> fuer beliebiges [mm]j[/mm].

Ich probiere mal:
[mm] $=\sum\limits_{i\in I}\lambda_i$ [/mm]

Orthogonalität: [mm] =0 [/mm] für [mm] i\not=j [/mm]
Also: [mm] $\sum\limits_{i\in I}\lambda_i=\lambda_j$ [/mm]

Orthonormalität: [mm] =1 [/mm] für alle [mm] $i\in [/mm] I$
Also: [mm] \lambda_j=\lambda_j [/mm]

Wie genau geht es weiter?

Vielen Dank nochmal

Bezug
                        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Fr 22.09.2017
Autor: luis52

  
>
> Ich probiere mal:
>  [mm]=\sum\limits_{i\in I}\lambda_i[/mm]
>  
> Orthogonalität: [mm]=0[/mm] für [mm]i\not=j[/mm]
>  Also: [mm]\sum\limits_{i\in I}\lambda_i=\lambda_j[/mm]
>  
> Orthonormalität: [mm]=1[/mm] für alle [mm]i\in I[/mm]
>  Also:
> [mm]\lambda_j=\lambda_j[/mm]

Die Annahme ist $ [mm] \sum_{i\in I}\lambda_i\cdot{}v_i=0 [/mm] $, also ist [mm] $==0$ [/mm]  ...

>  
> Wie genau geht es weiter?
>  
> Vielen Dank nochmal

Gerne.

Bezug
                                
Bezug
Lineare Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Fr 22.09.2017
Autor: James90

Vielen Dank Luis!

Bezug
        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Mo 25.09.2017
Autor: fred97


> Hallo!
>  
> Es sei V ein K-VR mit Skalarprodukt [mm]<.,.>[/mm], I eine beliebige
> Indexmenge und [mm](v_i)_{i\in I}[/mm] eine orthonormale Folge in
> V.
>  Zeigen Sie, dass die Folge [mm](v_i)_{i\in I}[/mm] linear
> unabhängig ist.
>  
> Mein Versuch:
>  Sei [mm](\lambda_i)_{i\in I}[/mm] eine Folge in K mit [mm]\sum_{i\in I}\lambda_i*v_i=0[/mm]

Dieser Ansatz stört mich gewaltig ! Für die lineare Unabhängigkeit ist zu zeigen: ist J eine endliche(!) Teilmenge von I und is zu jedem j [mm] \in [/mm] J ein Skalar [mm] \lambda_j [/mm] gegeben mit

[mm]\sum_{j\in J}\lambda_j*v_j=0[/mm],

so folgt  [mm] \lambda_j=0 [/mm] für alle j [mm] \in [/mm] J.

Es gelte also [mm]\sum_{j\in J}\lambda_j*v_j=0[/mm].

Mit Pythagoras folgt dann:

$0= [mm] ||\sum_{j\in J}\lambda_j*v_j||^2=\sum_{j\in J}|\lambda_j|^2*||v_j||^2$ [/mm]

Nun sieht man:  $ [mm] \lambda_j=0 [/mm] $ für alle j $ [mm] \in [/mm] $ J.



>  
> Auf beiden Seite die (stetige) induzierte Norm:
> [mm]\|\sum_{i\in I}\lambda_i*v_i\|=\|0\|[/mm]
>  Normeigenschaft:
> [mm]\|\sum_{i\in I}\lambda_i*v_i\|=\sum_{i\in I}\lambda_i*\|v_i\|=0[/mm]
>  
> Orthonormale Eigenschaft: [mm]\sum_{i\in I}\lambda_i*1=0[/mm]
>  Also:
> [mm]\lambda_i=0[/mm] für alle [mm]i\in I[/mm]
>  Also: [mm](v_i)_{i\in I}[/mm] linear
> unabhängig
>  
> Geht das so?
>  
> Vielen Dank!
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 9m 5. Peter_123
UStat/Prüfen auf Verteilung
Status vor 31m 2. Diophant
SStatHypo/Wahl Nullhypothese
Status vor 2h 52m 6. Gonozal_IX
UWTheo/Verteilungsfunktion berechnen
Status vor 4h 32m 10. matux MR Agent
DiffGlPar/schwaches Maximumprinzip
Status vor 5h 16m 4. tobit09
UDiskrMath/Mengengleichheit zeigen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]