matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseMA(q) Prozess
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Prozesse" - MA(q) Prozess
MA(q) Prozess < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MA(q) Prozess: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 So 21.09.2014
Autor: Thomas_Aut

Aufgabe
Es sei [mm] $(\epsilon_{t})$ $\sim$ [/mm] $ [mm] WN(\sigma^{2})$ [/mm] ein weißes Rauschen mit Varianz [mm] $\sigma^2 [/mm] $. Weiters sind zwei lineare Filter $a(L) = [mm] 1+a_{1}L$ [/mm] und $b(L) = [mm] 1+b_{1}L$ [/mm] gegeben. (L ist der Lag-Operator und [mm] $a_{1},b_{1}$ [/mm] sind zwei reelle Zahlen.
Wir betrachten nun den Prozess [mm] $(y_{t})$, [/mm] der definiert ist durch
$ [mm] (y_{t}) =a(L)b(L)(\epsilon_{t}) [/mm] $
a) Zeige, dass [mm] $(y_{t})$ [/mm] ein MA(2) Prozess ist. Gib dazu eine passende Darstellung der Form
[mm] $(y_{t}) [/mm] = [mm] c_{0} [/mm] + [mm] c_{1}\epsilon_{t-1} [/mm] + [mm] c_{2}\epsilon_{t-2}$ [/mm] an.
b) Berechne Erwartungswert und Autokovarianzfkt. des Prozesses
c) Zeige, dass [mm] $(y_{t})$ [/mm] nur ein weißes Rauschen ist, wenn [mm] $a_{1},b_{1}=0$ [/mm] gilt.
d) Wann erfüllt die obige Darstellung die (strikte) Minimum-Phase Bedingung?

Hallo,

anbei poste ich meine Ideen zur Lösung - wäre super falls ihr da mal drüberschauen könnt.


ad a)

[mm](y_{t}) = (1+a_{1})(1+b_{1})(\epsilon_{t}) = (1+b_{1}L+a_{1}L+a_{1}b_{1}L)\epsilon_{t} = \epsilon_{t}+\epsilon_{t-1}(a_{1}+b_{1})+\epsilon_{t-2}a_{1}b_{1} [/mm]
also würden wir [mm] $c_{0} [/mm] = 1, [mm] c_{1} [/mm] = [mm] a_{1}+b_{1} [/mm] , [mm] c_{2} [/mm] = [mm] a_{1}b_{1}$ [/mm] wählen und hätten damit gezeigt, dass wir einen MA(2) Prozess haben.

ad b)

[mm] \mathbb{E}[y_{t}] = c_{0}\mathbb{E}[\epsilon_{t}] + c_{1}\mathbb{E}[\epsilon_{t-1}] +c_{2}\mathbb{E}[\epsilon_{t-2}] = 0 [/mm], da der Erwartungswert unabhängig von t ist.

ad c)
[mm] $\gamma(k)= \sigma^2 \sum_{j=0}^{j-k}c_{j+k}c_{j} [/mm] $ für $ 0 [mm] \le [/mm] k [mm] \le [/mm] q$

[mm] $\gamma(0) [/mm] = [mm] \sigma^2 (c_{0}^2 [/mm] + [mm] c_{1}^2 [/mm] + [mm] c_{2}^2)$ [/mm]
[mm] $\gamma(1) [/mm] = [mm] \sigma^2(c_{1}c_{0} [/mm] + [mm] c_{1}c_{2})$ [/mm]
[mm] $\gamma(2) [/mm] = [mm] c^2c_{2}c_{0}$ [/mm]

also:

[mm]\gamma(k) = \begin{cases} \sigma^2 (c_{0}^2 + c_{1}^2 + c_{2}^2), & \mbox{für } k=0 \\ \sigma^2(c_{1}c_{0} + c_{1}c_{2}), & \mbox{für } k=1 \\ c^2c_{2}c_{0} & \mbox{für } k = 2 \\ 0 & \mbox{für }k>2 \end{cases}[/mm]

ad c)

für [mm] $a_{1} [/mm] = [mm] b_{1} [/mm] = 0 $ folgt [mm] $c_{1} [/mm] = [mm] c_{2} [/mm] = 0$ und damit
[mm] $(y_{t}) [/mm] = [mm] \epsilon_{t} [/mm] $, und [mm] $\epsilon_{t} \sim WN(\sigma^2) [/mm] $

d) Es soll $y(z) [mm] \neq [/mm] 0$ für $|z| [mm] \le [/mm] 1$

[mm] $1-c_{1}z [/mm] - [mm] c_{2}z^2 [/mm] =  0 $
[mm] $\Rightarrow z_{1,2} \neq \frac{\frac{c1}{c2}}{2} \pm \sqrt{(\frac{\frac{c1}{c2}}{2})^2 + \frac{1}c_{2}}$ [/mm]

Beste Grüße und Dank

Thomas

        
Bezug
MA(q) Prozess: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Di 23.09.2014
Autor: Thomas_Aut

Um das Ablaufdatum zu verlängern.

Ich hoffe, dass sich das mal jemand anschauen kann.


Lg und Danke

Bezug
        
Bezug
MA(q) Prozess: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Sa 27.09.2014
Autor: steppenhahn

Hallo Thomas,

> Es sei [mm](\epsilon_{t})[/mm] [mm]\sim[/mm] [mm]WN(\sigma^{2})[/mm] ein weißes
> Rauschen mit Varianz [mm]\sigma^2 [/mm]. Weiters sind zwei lineare
> Filter [mm]a(L) = 1+a_{1}L[/mm] und [mm]b(L) = 1+b_{1}L[/mm] gegeben. (L ist
> der Lag-Operator und [mm]a_{1},b_{1}[/mm] sind zwei reelle Zahlen.
>  Wir betrachten nun den Prozess [mm](y_{t})[/mm], der definiert ist
> durch
>  [mm](y_{t}) =a(L)b(L)(\epsilon_{t})[/mm]
>  a) Zeige, dass [mm](y_{t})[/mm]
> ein MA(2) Prozess ist. Gib dazu eine passende Darstellung
> der Form
>  [mm](y_{t}) = c_{0} + c_{1}\epsilon_{t-1} + c_{2}\epsilon_{t-2}[/mm]
> an.
>  b) Berechne Erwartungswert und Autokovarianzfkt. des
> Prozesses
>  c) Zeige, dass [mm](y_{t})[/mm] nur ein weißes Rauschen ist, wenn
> [mm]a_{1},b_{1}=0[/mm] gilt.
>  d) Wann erfüllt die obige Darstellung die (strikte)
> Minimum-Phase Bedingung?
>  Hallo,
>  
> anbei poste ich meine Ideen zur Lösung - wäre super falls
> ihr da mal drüberschauen könnt.
>  
>
> ad a)
>  
> [mm](y_{t}) = (1+a_{1}\red{L})(1+b_{1}\red{L})(\epsilon_{t}) = (1+b_{1}L+a_{1}L+a_{1}b_{1}\red{L^2})\epsilon_{t} = \epsilon_{t}+\epsilon_{t-1}(a_{1}+b_{1})+\epsilon_{t-2}a_{1}b_{1}[/mm]

>

> also würden wir [mm]c_{0} = 1, c_{1} = a_{1}+b_{1} , c_{2} = a_{1}b_{1}[/mm]
> wählen und hätten damit gezeigt, dass wir einen MA(2)
> Prozess haben.


Das Endergebnis ist richtig, aber oben in deiner Herleitung der Koeffizienten fehlt manchmal der Lag-Operator. Ich habe es rot hinzugefügt.


> ad b)
>  
> [mm]\mathbb{E}[y_{t}] = c_{0}\mathbb{E}[\epsilon_{t}] + c_{1}\mathbb{E}[\epsilon_{t-1}] +c_{2}\mathbb{E}[\epsilon_{t-2}] = 0 [/mm],
> da der Erwartungswert unabhängig von t ist.

Ja, weil [mm] $\IE[\varepsilon_t] [/mm] = 0$ für alle $t$.

> ad c)
>  [mm]\gamma(k)= \sigma^2 \sum_{j=0}^{j-k}c_{j+k}c_{j}[/mm] für [mm]0 \le k \le q[/mm]
>  
> [mm]\gamma(0) = \sigma^2 (c_{0}^2 + c_{1}^2 + c_{2}^2)[/mm]
>  
> [mm]\gamma(1) = \sigma^2(c_{1}c_{0} + c_{1}c_{2})[/mm]
>  [mm]\gamma(2) = \red{c^2}c_{2}c_{0}[/mm]

Alles richtig, bis auf das Rote (Schreibfehler), da sollte [mm] $\sigma^2$ [/mm] stehen.


> also:
>
> [mm]\gamma(k) = \begin{cases} \sigma^2 (c_{0}^2 + c_{1}^2 + c_{2}^2), & \mbox{für } k=0 \\ \sigma^2(c_{1}c_{0} + c_{1}c_{2}), & \mbox{für } k=1 \\ \red{c^2} c_{2}c_{0} & \mbox{für } k = 2 \\ 0 & \mbox{für }k>2 \end{cases}[/mm]


Ja!


> ad c)
>  
> für [mm]a_{1} = b_{1} = 0[/mm] folgt [mm]c_{1} = c_{2} = 0[/mm] und damit
>  [mm](y_{t}) = \epsilon_{t} [/mm], und [mm]\epsilon_{t} \sim WN(\sigma^2)[/mm]


Ja, aber das ist nicht die Aufgabe.
Du sollst zeigen, dass wenn der Prozess [mm] $y_t$ [/mm] ein weißes Rauschen ist, [mm] $a_1,b_1 [/mm] = 0$ gelten muss. Du hast das umgekehrte gezeigt.

Beginne so: Ist [mm] $y_t$ [/mm] ein weißes Rauschen, so gilt [mm] $\gamma(0) [/mm] = [mm] \sigma^2$, $\gamma(k) [/mm]  = 0$ für $|k| [mm] \ge [/mm] 1$. Du hast oben die Autokovarianzfunktion explizit ausgerechnet und kannst daher aus diesen Gleichungen Aussagen für [mm] $a_1,b_1$ [/mm] folgern.



> d) Es soll [mm]y(z) \neq 0[/mm] für [mm]|z| \le 1[/mm]
>  
> [mm]1-c_{1}z - c_{2}z^2 = 0[/mm]


Sollte dein Polynom nicht c(z) = 1 + [mm] c_1 [/mm] z + [mm] c_2 z^2 [/mm] lauten? Schließlich ist dein MA-Prozess [mm] $y_t [/mm] = [mm] \varepsilon_{t} [/mm] + [mm] c_1 \varepsilon_{t-1} [/mm] + [mm] c_2 \varepsilon_{t-2}$. [/mm]

Dessen Nullstellen sind

$1 + [mm] c_1 [/mm] z + [mm] c_2 z^2 [/mm] = 0 [mm] \gdw z^2 [/mm] + [mm] \frac{c_1}{c_2} [/mm] z + [mm] \frac{1}{c_2} [/mm] = 0 [mm] \gdw z_{1,2} [/mm] = [mm] -\frac{c_1}{2c_2} \pm \sqrt{\left(\frac{c_1}{2c_2}\right)^2 - \frac{1}{c_2}}$. [/mm]

Du musst nun herausfinden, für welche [mm] $a_1,b_1$ [/mm] gilt:

[mm] |z_{1,2}| [/mm] > 1.

(Nullstellen außerhalb des Einheitskreises). Dann ist die strict minimum phase Bedingung erfüllt.

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]