matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieNotation Stetigkeit von Maßen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maßtheorie" - Notation Stetigkeit von Maßen
Notation Stetigkeit von Maßen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Notation Stetigkeit von Maßen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:43 Fr 26.09.2014
Autor: Cccya

Ich habe eine Frage zur Notation beim Beweis der Stetigkeit eines
Wahrscheinlichkeitsmaßes. Dabei stellt man ja eine Vereinigung als disjunkte
Vereinigung dar. Ich habe das so gefunden: [mm] \bigcup_{i=1}^{\infty} A_{i}= \bigcup_{i=1}^{\infty} (A_{i}\backslash A_{i-1}). [/mm] Für mich müsste es aber eigentlich so aussehen  [mm] \bigcup_{i=1}^{\infty} A_{i}= \bigcup_{i=1}^{\infty} (A_{i}\backslash \bigcup_{j=1}^{i-1}A_{j}) [/mm]
Sprich das [mm] A_{i} [/mm] muss jeweils ohne Überschneidung mit allen vorangegangenen Folgegliedern sein, nicht nur mit dem direkt vorangegangenen, sonst ist doch die Vereinigung nicht paarweise disjunkt? Also meine Frage, sind diese Notationen äquivalent und wenn ja, warum?

        
Bezug
Notation Stetigkeit von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Fr 26.09.2014
Autor: DieAcht

Hallo,


Ich finde deine Ausführung ziemlich chaotisch. Meine Kristall-
kugel sagt mir, dass wir hier eigentlich

      [mm] \green{A}=\bigcup_{i=1}^{\infty}(A_i\setminus A_{i-1}), [/mm]

betrachten müssen. Bist du dir sicher, dass in deinem Skript

      [mm] \red{\bigcup_{i=1}^{\infty}A_i}=\bigcup_{i=1}^{\infty}(A_i\setminus A_{i-1}). [/mm]

steht?


Vielleicht nochmal "anschaulicher":

Sei [mm] $A_n\uparrow [/mm] A$. Mit [mm] A_0:=\emptyset [/mm] definieren wir

      [mm] $B_n:=A_n\setminus A_{n-1}$ [/mm] für alle [mm] n\in\IN. [/mm]

Dann sind die Mengen

      [mm] B_1,B_2,\ldots [/mm]

paarweise disjunkt und ihre Vereinigung ist [mm] $A\$. [/mm] In Notation:

      [mm] A=\bigcup_{i=1}^{\infty}B_n=\bigcup_{i=1}^{\infty}(A_n\setminus A_{n-1}). [/mm]

Mach dir die Voraussetzung [mm] $A_n\uparrow [/mm] A$ klar und denk dann noch
einmal über disjunkte bzw. paarweise disjunkte Mengen nach.


Falls ich mich irre, dann ist bestimmt Gono bald zur Stelle. :-)


Gruß
DieAcht

Bezug
                
Bezug
Notation Stetigkeit von Maßen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Fr 26.09.2014
Autor: Cccya

Hi,

sry für die chaotische Präsentation, ich bin etwas aus der Übung was Mathe angeht. Aber ich glaube ich habs jetzt verstanden, ich hatte nicht daran gedacht, dass [mm] A_{n} [/mm] eine aufsteigende Folge ist. In [mm] A_{n-1} [/mm] sind ja alle vorangegangenen Folgeglieder schon enthalten deshalb ist [mm] \bigcup_{n=1}^{\infty}(A_n\setminus A_{n-1}) [/mm] paarweise disjunkt oder?
Aber A = [mm] \bigcup_{n=1}^{\infty}A_{n} [/mm] für Stetigkeit von unten und A = [mm] \bigcap_{n=1}^{\infty} A_{n} [/mm] für Stetigkeit von oben laut meinem Skript.

Auf jedenfall danke schonmal!



Bezug
                        
Bezug
Notation Stetigkeit von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Fr 26.09.2014
Autor: DieAcht


> In [mm]A_{n-1}[/mm] sind ja alle
> vorangegangenen Folgeglieder schon enthalten deshalb ist
> [mm]\bigcup_{n=1}^{\infty}(A_n\setminus A_{n-1})[/mm] paarweise
> disjunkt oder?

Das ist viel zu ungenau. Unsere Voraussetzung

[mm] $A_n\uparrow [/mm] A$ für [mm] n\to\infty [/mm] heißt, dass [mm] A_{n}\subseteq A_{n+1} [/mm] für alle [mm] n\in\IN [/mm] und [mm] \bigcup_{n\in\IN}A_n=A [/mm] gilt.

Aus obigem Grund können wir schreiben (siehe andere Antwort)

      [mm] A=\bigcup_{n\in\IN}(A_n\setminus A_{n-1}) [/mm] für alle [mm] n\in\IN [/mm] mit [mm] A_0:=\emptyset. [/mm]

Die Mengen [mm] $(A_n\setminus A_{n-1})$ [/mm] für alle [mm] n\in\IN [/mm] sind paarweise disjunkt.
Damit stellen wir [mm] $A\$ [/mm] als eine Vereinigung disjunkter Mengen dar!

>  Aber A = [mm]\bigcup_{n=1}^{\infty}A_{n}[/mm] für Stetigkeit von
> unten und A = [mm]\bigcap_{n=1}^{\infty} A_{n}[/mm] für Stetigkeit
> von oben laut meinem Skript.

[mm] $A_n\downarrow [/mm] A$ für [mm] n\to\infty [/mm] heißt, dass [mm] A_{n+1}\subseteq A_{n} [/mm] für alle [mm] n\in\IN [/mm] und [mm] \bigcap_{n\in\IN}A_n=A [/mm] gilt.

Bezug
        
Bezug
Notation Stetigkeit von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Fr 26.09.2014
Autor: Gonozal_IX

Hiho,

eigentlich hat DieAcht bereits alles dazu geschrieben.
Meine Kristallkugel sagt mir, dass du eine Aufsteigende Folge von Mengen [mm] A_i [/mm] betrachtest, daher gilt:

[mm] $A_{i-1} [/mm] = [mm] \bigcup_{j=1}^{i-1} A_j$ [/mm]

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]