matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitung
Partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Fehlerrechnung
Status: (Frage) beantwortet Status 
Datum: 11:03 Di 04.07.2017
Autor: fse

Ich habe ein System dessen größe sich folgendermaßen berechnet
[mm] E=\bruch{x*y^2}{z} [/mm]

den fehler meines wertes E kann ich ja mit Hilfe der partiellen Ableitung berechnen
[mm] \Delta E=|\bruch{y^2}{z}|*\Delta [/mm] x + [mm] |\bruch{2xy}{z}|*\Delta [/mm] y [mm] +=|\bruch{-xy}{z^2}|*\Delta [/mm] z

Darf ich die Formel auch anwenden wenn meine Werte x,y,z aufgrund des Systems nur negative Toleranzen haben können
z.B:

[mm] x=9_{-0.60}^{+0} [/mm]  wäre hier dann mein [mm] \Delta [/mm] x trotzedem 0,6 ?

[mm] y=4_{-0.103}^{+0} [/mm] wäre hier dann mein [mm] \Delta [/mm] x trotzedem 0,103 ?


[mm] z=2_{-0.45}^{+0} [/mm] wäre hier dann mein [mm] \Delta [/mm] x trotzedem 0,45 ?

und wie wäre es wenn ich Toleranzen hab mit z.B.  [mm] _{-0.60}^{+0.3} [/mm]
wie wäre hier mein [mm] \Delta [/mm] x?

Viele Grüße
fse

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 04.07.2017
Autor: Al-Chwarizmi


> Ich habe ein System dessen größe sich folgendermaßen
> berechnet
>  [mm]E=\bruch{x*y^2}{z}[/mm]
>  
> den fehler meines wertes E kann ich ja mit Hilfe der
> partiellen Ableitung berechnen
>  [mm]\Delta E=|\bruch{y^2}{z}|*\Delta x\, +\,|\bruch{2xy}{z}|*\Delta[/mm] y [mm]+=|\bruch{-xy}{z^2}|*\Delta[/mm] z      [haee]

(1.)  da scheint beim dritten Teilterm etwas nicht zu stimmen
(2.)  Auch die  [mm] \Delta [/mm] x , [mm] \Delta [/mm] y , [mm] \Delta [/mm] z  sollten zwischen Betragsstrichen stehen.
(3.)  Natürlich hat man am Ende eine Ungleichung:   [mm] $|\Delta E|\, \le\, |\bruch{y^2}{z}|*|\Delta [/mm] x| +\ .....$  
  

> Darf ich die Formel auch anwenden wenn meine Werte x,y,z
> aufgrund des Systems nur negative Toleranzen haben können
>  z.B:
>  
> [mm]x=9_{-0.60}^{+0}[/mm]  wäre hier dann mein [mm]\Delta[/mm] x trotzedem
> 0,6 ?
>
> [mm]y=4_{-0.103}^{+0}[/mm] wäre hier dann mein [mm]\Delta[/mm] x trotzedem
> 0,103 ?
>
>
> [mm]z=2_{-0.45}^{+0}[/mm] wäre hier dann mein [mm]\Delta[/mm] x trotzedem
> 0,45 ?
>  
> und wie wäre es wenn ich Toleranzen hab mit z.B.  
> [mm]_{-0.60}^{+0.3}[/mm]
>  wie wäre hier mein [mm]\Delta[/mm] x?

Für derartige Fälle mit konkreten Minimal- und Maximalwerten kann
man doch einfach alle (höchstens 8) möglichen Grenzfälle auch ohne Differential-
Rechnung bestimmen und sich dann (mittels zusätzlicher Stetigkeits-
überlegungen) klar machen, in welchem Intervall die Funktionswerte
schließlich liegen müssen.  

LG  ,    Al-Chwarizmi

Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Di 18.07.2017
Autor: fse

Es muss natürlich wie folgt heißen:
[mm] \Delta E=|\bruch{y^2}{z}|\cdot{}\Delta x\, +\,|\bruch{2xy}{z}|\cdot{}\Delta [/mm] y [mm] +|\bruch{-xy^2}{z^2}|\cdot{}\Delta [/mm] z

Wenn ich die Werte direkt in die Formel  [mm] E=\bruch{x\cdot{}y^2}{z} [/mm] einsetze mache ich meines Wissens nach einen kleinen Fehler! ?
´
Wenn ich es aber genau berechnen will und unterschiedliche Positive und Negative Abweichungen hab (z.B.:
[mm] x=9_{-0.60}^{+0.20} [/mm]

[mm] y=7_{-0.90}^{+0.4} [/mm]

[mm] z=4_{-0.80}^{+0.01}) [/mm]

kann ich dann nicht einfach den Maximalen Fehler mit [mm] \Delta E=|\bruch{y^2}{z}|\cdot{}\Delta x\, +\,|\bruch{2xy}{z}|\cdot{}\Delta [/mm] y [mm] +|\bruch{-xy^2}{z^2}|\cdot{}\Delta [/mm] z  für die Positiven werte berechnen (in dem ich als [mm] \Delta [/mm] x  , [mm] \Delta [/mm] y   , [mm] \Delta [/mm] z  nur die positiven Werte nehme) und zusätzlich den Betrag des Maximalen Fehlers mit [mm] \Delta E=|\bruch{y^2}{z}|\cdot{}\Delta x\, +\,|\bruch{2xy}{z}|\cdot{}\Delta [/mm] y [mm] +|\bruch{-xy^2}{z^2}|\cdot{}\Delta [/mm] z für die Negativen Werte berechne in dem ich nur die Beträge der Negativen Werte in [mm] \Delta [/mm] x  , [mm] \Delta [/mm] y   , [mm] \Delta [/mm] z  einsetze?

Grüße fse

Bezug
                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Di 18.07.2017
Autor: HJKweseleit

Lass mal die Beträge ganz weg:

[mm] \Delta E=\bruch{y^2}{z}\cdot{}\Delta x\, +\,\bruch{2xy}{z}\cdot{}\Delta y\, -\bruch{xy^2}{z^2}\cdot{}\Delta z\ [/mm]

Du erhältst den größten (positiven) Wert für maximale Fehler [mm] \Delta x\,=0,20, \Delta y\,=0,4 [/mm] und minimalen Fehler [mm] \Delta z\,=-0,80, [/mm] denn dann werden alle Summanden positiv und die Summe dabei so groß wie möglich.

Du erhältst den kleinsten (negativen) Wert für minimale Fehler [mm] \Delta x\,=-0,60, \Delta y\,=-0,90 [/mm] und maximalen Fehler [mm] \Delta z\,=0,01, [/mm] denn dann werden alle Summanden negativ und die Summe dabei so klein wie möglich.

Der tatsächliche Fehler liegt dazwischen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 6h 51m 63. rabilein1
MSons/Kann man beim Roulette verlier
Status vor 12h 48m 6. Al-Chwarizmi
UStoc/Geordnete Stichproben mit Wdh.
Status vor 12h 50m 12. Diophant
ULinAAb/Permutationsgr./ Transposition
Status vor 1d 14h 36m 2. matux MR Agent
DiffGlPar/Abschätzung
Status vor 1d 16h 36m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]