matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Regelfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Regelfunktion
Regelfunktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelfunktion: Übung
Status: (Frage) beantwortet Status 
Datum: 19:48 Do 18.12.2014
Autor: Striker_03

Aufgabe
Ist $ f: [0,1] $ $ [mm] \to \IR [/mm] $ mit

[mm] f(x)=\left\{\begin{matrix} sin(\bruch{1}{x}), & \mbox{für }x\mbox{>0} \\ 0, & \mbox{für }x\mbox{=0} \end{matrix}\right. [/mm]

eine Regelfunktion?

Guten Abend
der [mm] \limes_{x \to 0}f(x) [/mm] existiert ja nicht mal, da es nicht def. ist.
und somit kann f ja keine Regelfunktion sein?

Reicht es als Begründung oder? Das war eine alte Klausuraufgabe und für diesen einen Satz 4 punkte? ^^

oder hab ich was übersehen?

LG



        
Bezug
Regelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Do 18.12.2014
Autor: Marcel

Hallo,

> Ist [mm]f: [0,1][/mm] [mm]\to \IR[/mm] mit
>  
> [mm]f(x)=\left\{\begin{matrix} sin(\bruch{1}{x}), & \mbox{für }x\mbox{>0} \\ 0, & \mbox{für }x\mbox{=0} \end{matrix}\right.[/mm]
>  
> eine Regelfunktion?
>  Guten Abend
>  der [mm]\limes_{x \to 0}f(x)[/mm] existiert ja nicht mal, da es
> nicht def. ist.
>  und somit kann f ja keine Regelfunktion sein?
>  
> Reicht es als Begründung oder? Das war eine alte
> Klausuraufgabe und für diesen einen Satz 4 punkte? ^^
>  
> oder hab ich was übersehen?

damit ist [mm] $x_0$ [/mm] eine Unstetigkeitsstelle, die keine Sprungstelle ist. Die 4 Punkte
sind gerechtgertigt, wenn man auch beweist, dass dort keine Sprungstelle
vorliegt, also:

Beweise, dass [mm] $\lim_{x \to 0}f(x)$ [/mm] nicht existiert (es gäbe hier ja eh
nur einen rechtsseitigen Limes, deswegen muss ich das nicht anders
schreiben, wie etwa in [mm] $\lim_{0 < x \to 0}\sin(1/x)$). [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
Regelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Do 18.12.2014
Autor: Marcel

Hallo,

> Ist [mm]f: [0,1][/mm] [mm]\to \IR[/mm] mit
>  
> [mm]f(x)=\left\{\begin{matrix} sin(\bruch{1}{x}), & \mbox{für }x\mbox{>0} \\ 0, & \mbox{für }x\mbox{=0} \end{matrix}\right.[/mm]
>  
> eine Regelfunktion?
>  Guten Abend
>  der [mm]\limes_{x \to 0}f(x)[/mm] existiert ja nicht mal, da es
> nicht def. ist.

da habe ich jetzt eben nicht aufgepasst:
Was meinst Du eigentlich mit "da es nicht definiert ist"? Was ist
es und wo soll das nicht definiert sein? Es kann nämlich sein,
dass Du da falsch denkst, das weiß ich aber erst, wenn Du mit klaren
Worten kommunizierst, erst dann kann ich es klar korrigieren!

Gruß,
  Marcel

Bezug
                
Bezug
Regelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Do 18.12.2014
Autor: Striker_03

danke erstmal für deine Antwort.

Ja ich glaube, ich habe ein Denkfehler

wenn ich den Grenzwert von $ [mm] sin(\bruch{1}{x}) [/mm] $ betrachte.
Und x gegen 0 laufen lasse, habe ich ja 1 durch 0 stehen und das ist ja nicht def.
Aber ich glaube das ist falsch gedacht.
Habe jetzt woanders gelesen, dass ich den links bzw. rechtsseitigen Grenzwert betrachten soll. Weiß zwar noch nicht wie der funktioniert, aber wäre das besser als meine Idee?

LG

Bezug
                        
Bezug
Regelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Do 18.12.2014
Autor: Marcel

Hallo,

> danke erstmal für deine Antwort.
>  
> Ja ich glaube, ich habe ein Denkfehler
>  
> wenn ich den Grenzwert von [mm]sin(\bruch{1}{x})[/mm] betrachte.
>  Und x gegen 0 laufen lasse, habe ich ja 1 durch 0 stehen
> und das ist ja nicht def.

das ist falsch gedacht. Dass [mm] $\sin(1/0)$ [/mm] nicht definiert ist, ist okay, weil ja [mm] $1/0\,$ [/mm]
schon nicht definiert ist. Aber bei Deiner auf [mm] $[0,1]\,$ [/mm] definierten Funktion [mm] $f\,$ [/mm] ist
das für

    [mm] $\lim_{x \to 0}f(x)$ [/mm]

doch vollkommen egal, denn: [mm] $f(x)\,$ [/mm] ist definiert für jedes $x [mm] \in [0,1]\,.$ [/mm] Außerdem
gilt $x > 0$ [mm] $\Rightarrow$ $f(x)=\sin(1/x)$ [/mm] und $x=0$ [mm] $\Rightarrow$ $f(x)=f(0)=0\,.$ [/mm]

Dass man nicht [mm] $\lim_{x \to 0}\sin(1/x)=\sin(1/\lim_{x \to 0}x)$ [/mm] schreiben kann, interessiert dabei
an keiner Stelle!

Übrigens steckt in der Notation [mm] $\lim_{x \to 0}f(x)$ [/mm] zudem $x [mm] \not=0$ [/mm] und $x [mm] \in D_f$ [/mm]
mit drin (versteckt).

>  Aber ich glaube das ist falsch gedacht.
>  Habe jetzt woanders gelesen, dass ich den links bzw.
> rechtsseitigen Grenzwert betrachten soll.

Der linksseitige an der Stelle 0 ist hier unsinnig. Warum?

> Weiß zwar noch nicht wie der funktioniert, aber wäre das besser als
> meine Idee?

Eigentlich steckt in

    [mm] $\lim_{x \to 0}f(x)$ [/mm]

hier schon mit drin, dass Du den rechtsseitigen Grenzwert

    [mm] $\lim_{\substack{0 < x \to 0\\x \in D_f}}f(x)$ [/mm]

betrachtest - das ist hier das Gleiche!

Tipp: Die Definition 10.4 von []hier ist äquivalent
zu den gängigen anderen möglichen Definitionen.

Deswegen: Der rechtsseitige Grenzwert

    [mm] $\lim_{x \to x_0^+}f(x)$ [/mm]

an der Stelle [mm] $x_0=0$ [/mm] fällt hier mit

    [mm] $\lim_{x \to x_0}f(x)$ [/mm]

zusammen [mm] ($x_0=0$ [/mm] ist linker Randpunkt von [mm] $D_f=[0,1]$). [/mm]

Letztstehender Grenzwert existiert nicht: Sei

    [mm] $x^{(1)}_n:=\frac{1}{n*\pi}$ [/mm]

und

    [mm] $x^{(2)}_n:=\frac{1}{\frac{\pi}{2}+n*2\pi}\,.$ [/mm]

Dann gilt [mm] $0\not= x^{(1)}_n \to [/mm] 0$ und $0 [mm] \not=x^{(2)}_n \to [/mm] 0$ und [mm] $x^{(j)}_n \in D_f=[0,1]$ [/mm] für alle
[mm] $n\,$ [/mm] (für $j=1,2$).

Wie geht's wohl weiter?

P.S. Du kannst alternativ auch direkt

    [mm] $x_n=\frac{1}{n*\frac{\pi}{2}}$ [/mm]

betrachten! In diesem Falle wirst Du die Nichtexistenz von [mm] $\lim_{x \to 0}f(x)$ [/mm] dann damit
begründen können, dass die Folge [mm] $(f(x_n))_n$ [/mm] mehr als einen HP hat!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]