matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikRentenrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Finanzmathematik" - Rentenrechnung
Rentenrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenrechnung: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 16:19 So 03.04.2016
Autor: issy

Aufgabe
Frau XYZ ist 29 Jahre alt, monatlich verdient sie 3300 Euro brutto ( Gehalt wird jeweils am Ende des Monats ausbezahlt), 6% ihres Bruttogehalts (monatlich) wird abgezogen und in eine Rentenversicherung mit 2,7 % Zinsen jährlich gezahlt. Das Geld soll dann ab dem 65. Lebensjahr in monatlichen Raten ausbezahlt werden.
a) das Endkapital zur Zeit des Renteneintritts?
(sie wird genau am 31. Dez. 65 Jahre alt)
b) wie hoch wird die am Anfang des Monats zu erhaltende Rente sein, wenn die Auszahlung des Endkapitals zwischen 65 und 77 Jahren erfolgen soll?
c) die monatlich auszuzahlenende Rate, wenn es sich um eine ewige Rente handelt?

zu a) 3300 x 0,06x12 x ((1,0027^36-1) / (1,0027-1)) x 1,0027
ist das richtig? Vorschüssige Rente???
und b) und c) weiß ich leider nicht genau was ich da rechnen muss...


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.uni-protokolle.de/foren/viewtopic.php?p=2419671#2419671

        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 So 03.04.2016
Autor: leduart

Das Geld wir monatlich eingezahlt und auch ab da verzinst! und zwar am Ende des Monats.
also ist dein Ansatz nur jahresweise zu rechnen falsch.
zu b das Geld wird ja in 12 (oder 13 ich bin unsicher mit dem "wischen")) Jahren abmonatlich er zurückgezahlt, dabei wird wohl der jeweils verbleibende Restsumme weiter mit 2,7% verzinst .
deine Ergebnisse kannst du z. B in http://rente.rechner.handelsblatt.com/rechner/handelsblatt2/
überprüfen
Gruß leduart

Bezug
        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 So 03.04.2016
Autor: Staffan

Hallo,

wie leduart bereits gesagt hat, wird der Sparbetrag von 198 (6% von 3300) monatlich angelegt. Nun könnte man eine monatliche Verzinsung so verstehen, daß dem Kapital jeden Monat die Zinsen zugeschlagen werden und dann der Zinseszinseffekt eintritt. Das erscheint mir aber vor der ausdrücklichen Angabe der jährlichen Verzinsung in der Aufgabe fraglich. Das spricht dafür, daß unterjährig die Verzinsung nur linear erfolgt und man zuerst eine Jahresrate ermitteln muß, die das berücksichtigt, bevor man weiter rechnet. Da die Zahlungen hier immer am Monatsende vorgesehen sind, sind sie nachschüssig. Die Jahresrate (JR) ergibt sich aus der Summe der einzelen verzinsten Raten, die erste für 11 Monate, die zweite für 10 usw. Man kann das letztlich zu einer Formel umformen mit ZpJ(Zahlungen pro Jahr)=12, p=2,7, r=198, die lautet

$ JR=r [mm] \cdot \left(ZpJ + \bruch{p \cdot \left(ZpJ-1\right)}{200}\right)$. [/mm]

Der sich ergebende Betrag ist dann in die Formel einzusetzen, die Du nennst, allerdings muß es richtig heißen für den Endwert (EW)

$ EW=JR [mm] \cdot\bruch{1,027^{36}-1}{1,027-1}$. [/mm]

Für die Aufgabe b) ist der eben berechnete Wert als Barwert (BW) für eine jetzt vorschüssige monatliche Rente mit einer Laufzeit von 12 Jahren anzusetzen. Dabei ist wieder die lineare Verzinsung zu berücksichtigen. Hier ist wegen der Vorschüssigkeit in der oben zu JR genannten Formel lediglich das Minuszeichen durch ein Pluszeichen auszutauschen. Ansonsten muß mit der Barwertformel für nachschüssige jährliche Renten gerechnet werden.

Und bei c) ist der zu a) errechnete Wert als Barwert der ewigen Rente anzusetzen, für die gilt, wobei JR wie bei b) berechnet wird

$ [mm] BW=\bruch{JR \cdot 100}{2,7} [/mm]  $

Gruß
Staffan




Bezug
                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 So 03.04.2016
Autor: issy


> Hallo,
>  
> wie leduart bereits gesagt hat, wird der Sparbetrag von 198
> (6% von 3300) monatlich angelegt. Nun könnte man eine
> monatliche Verzinsung so verstehen, daß dem Kapital jeden
> Monat die Zinsen zugeschlagen werden und dann der
> Zinseszinseffekt eintritt. Das erscheint mir aber vor der
> ausdrücklichen Angabe der jährlichen Verzinsung in der
> Aufgabe fraglich. Das spricht dafür, daß unterjährig die
> Verzinsung nur linear erfolgt und man zuerst eine
> Jahresrate ermitteln muß, die das berücksichtigt, bevor
> man weiter rechnet. Da die Zahlungen hier immer am
> Monatsende vorgesehen sind, sind sie nachschüssig. Die
> Jahresrate (JR) ergibt sich aus der Summe der einzelen
> verzinsten Raten, die erste für 11 Monate, die zweite für
> 10 usw. Man kann das letztlich zu einer Formel umformen mit
> ZpJ(Zahlungen pro Jahr)=12, p=2,7, r=198, die lautet
>  
> [mm]JR=r \cdot \left(ZpJ + \bruch{p \cdot \left(ZpJ-1\right)}{200}\right)[/mm].
>  
> Der sich ergebende Betrag ist dann in die Formel
> einzusetzen, die Du nennst, allerdings muß es richtig
> heißen für den Endwert (EW)
>  
> [mm]EW=JR \cdot\bruch{1,027^{36}-1}{1,027-1}[/mm].
>  
> Für die Aufgabe b) ist der eben berechnete Wert als
> Barwert (BW) für eine jetzt vorschüssige monatliche Rente
> mit einer Laufzeit von 12 Jahren anzusetzen. Dabei ist
> wieder die lineare Verzinsung zu berücksichtigen. Hier ist
> wegen der Vorschüssigkeit in der oben zu JR genannten
> Formel lediglich das Minuszeichen durch ein Pluszeichen
> auszutauschen. Ansonsten muß mit der Barwertformel für
> nachschüssige jährliche Renten gerechnet werden.
>  
> Und bei c) ist der zu a) errechnete Wert als Barwert der
> ewigen Rente anzusetzen, für die gilt, wobei JR wie bei b)
> berechnet wird
>  
> [mm]BW=\bruch{JR \cdot 100}{2,7} [/mm]
>  
> Gruß
>  Staffan
>  
>
>  

Vielen Dank!

ich verstehe nicht ganz wo die "200" herkommt?

Gruß
Issy



Bezug
                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 So 03.04.2016
Autor: Staffan

Hallo,

wenn man die Zahlungen und Zinsen innerhalb eines Jahres rechnerisch so erfaßt, wie ich allgemein beschrieben hatte, ergibt sich folgendes:

$ JR=r [mm] \cdot \left(\bruch{p\cdot \left(ZpJ-1 \right)}{100 \cdot ZpJ}\right)+r \cdot \left(\bruch{p\cdot \left(ZpJ-2 \right)}{100 \cdot ZpJ}\right)+ [/mm] r [mm] \cdot \left(\bruch{p\cdot \left(ZpJ-3 \right)}{100 \cdot ZpJ}\right)+...r \cdot \left(\bruch{p\cdot \left(ZpJ-\left(ZpJ-1\right)\right)}{100 \cdot ZpJ}\right)+ [/mm] ZpJ [mm] \cdot [/mm] r $

$ JR=r [mm] \cdot \bruch{p}{100 \cdot ZpJ}\cdot \left(\left(ZpJ-1\right)+\left(ZpJ-2\right)+\left(ZpJ-3\right)+...+1\right)+ZpJ \cdot [/mm] r $

Die Klammer ist eine arithmetrische Reihe, also

$ JR=r [mm] \cdot \bruch{p}{100 \cdot ZpJ}\cdot\bruch{ZpJ-1}{2}\cdot \left(ZpJ-1+1\right)+ZpJ \cdot [/mm] r $

und gekürzt

$ JR=r [mm] \cdot \left(ZpJ+\bruch{p}{200}\cdot \left(ZpJ-1\right)\right) [/mm] $

Gruß
Staffan


Bezug
                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 So 29.05.2016
Autor: Rebellismus

Ich habe auch Interesse an der Aufgabe. Ich verstehe nicht wie die folgende Gleichung hergeleitet wurde:

$ JR=r [mm] \cdot \left(ZpJ + \bruch{p \cdot \left(ZpJ-1\right)}{200}\right) [/mm] $

Vor allem verstehe ich den foglenden Satz nicht:

> Da die Zahlungen hier immer am
> Monatsende vorgesehen sind, sind sie nachschüssig. Die
> Jahresrate (JR) ergibt sich aus der Summe der einzelen
> verzinsten Raten, die erste für 11 Monate, die zweite für
> 10 usw.

Wieso ergibt sich die erste jahresrate aus der Summe von 11 Monaten und die zweite aus der Summe für 10 Monaten?

Müsste sich nicht jede Jahresrate aus der Summe von 12 Monaten ergeben?

Die Dame zahlt jeden Monat eine Rate von 198 Euro. Wird diese Rate monatlich verzinst oder wird nur die Jahresrate, also 198*12=2376Euro, verzinst?

Bezug
                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 So 29.05.2016
Autor: Staffan

Hallo,

ich hatte in meiner letzten Antwort versucht dazulegen, wie sich die Formel herleiten läßt. Möglicherweise ist meine Ausdrucksweise nicht so deutlich, wie ich es angenommen hatte. Es werden im Jahr natürlich 12 Zahlungen geleistet, dabei die erste am Ende des ersten Monats. Sie wird für den Rest des Jahres (d.h. 11 Monate) verzinst, die nächste am Ende des zweiten Monats, so daß sich eine Verzinsung für 10 Monate ergibt usw. Die letzte Rate wird am Jahresende gezahlt mit der Folge, daß hier im laufenden Jahr keine Zinsen anfallen. Die Summe aus den 12 Raten einschließlich der im Jahr angefallenen Zinsen ist dann eine "Ersatz"Jahresrate, mit der man mit den üblichen Rentenformeln weiter rechnen kann.
In der Literatur wird diese Berechnungsweise mit linearer unterjähriger Verzinsung etwa behandelt bei Kobelt/Schulte Finanzmathemathik oder Caprano/Wimmer Finanzmathematik. Der Zinseszinseffekt tritt jeweils zum Jahresende ein.

Gruß
Staffan


Bezug
                                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Mo 30.05.2016
Autor: Rebellismus

Hallo,

ich habe das leider noch nicht verstanden. Ich habe mal die Rente für 2 Jahre berechnet. Was genau ist in meiner Rechnung falsch:

1 Jahr: [mm]12*3300*0,06*1,027=2440,152 Euro[/mm]

Begründung: Sie zahlt 6% ihres Jahresbruttoeinkommen (12*3300*0,06) in die Rentenkasse. Dieser wird um 2,7% verzinst.

2 Jahr: [mm](2440,152+12*3300*0,06)*1,027=4946,188 Euro[/mm]

Begründung: Zu dem bereits im ersten Jahr verzinste Beitrag (2440,152 Euro) wird im 2. jahr wieder 6% des Jahrenbruttogehalts eingezahlt. Der daraus resultierende betrag wird wieder um 2,7% verzinst.

Stimmt die Rechnung soweit? Wenn nein, wo ist mein Denkfehler?





Bezug
                                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Mo 30.05.2016
Autor: Staffan

Hallo,

in der Aufgabe wird von dem monatlichen Gehalt (3.300.-) ausgegangen und  monatlich ein Betrag (198.-) für die Rentenversicherung abgezogen. Das heißt doch, er wird auch monatlich dort eingezahlt und muß dann dementsprechend verzinst werden. Bei Deiner Rechnung wird eine einmalige Zahlung am Jahresanfang geleistet von $ 12 [mm] \cdot [/mm] 3300 [mm] \cdot [/mm] 0,06 =2376 $ und bereits für das erste Jahr schon verzinst.

Ich habe folgendes angenommen, wobei ich das Jahr der Einfachheit dem Kalenderjahr gleichgesetzt habe:

Ende Januar wird eingezahlt 198,00. Bis Ende Dezember, also 11 Monate, wird dieser Betrag verzinst, so daß [mm] B_1 [/mm] beträgt
[mm] $B_1= [/mm] 198 [mm] \cdot \left(1+\bruch{2,7 \cdot 11}{100 \cdot 12}\right)=202,90 [/mm] $;
Ende Februar werden wieder eingezahlt 198,00, die für 10 Monate verzinst werden, also
$ [mm] B_2=198 \cdot \left(1+\bruch{2,7 \cdot 10}{100 \cdot 12}\right)=202,46 [/mm] $.
Das setzt sich die folgenden Monate so fort. Zum Jahresende werden alle verzinsten und ein unverzinster Betrag (nämlich der letzte) addiert mit dem Ergebnis 2.405,40  (JR), das sich auch dann ergibt, wenn man die von mir angeführte Formel verwendet. Für die folgenden Jahre kann man jetzt jahrweise rechnen. Am Ende des zweiten Jahres ist das dann $ [mm] J_2=2405,40 \cdot [/mm] 1,027 + 2405,40=4875,75$ bzw. allgemeiner der Endwert (EW) für n Jahre  beträgt

$ EW=JR [mm] \cdot \bruch{1,027^n-1}{1,027-1}$ [/mm]

Gruß
Staffan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 27m 4. fred97
UAnaR1/Pos. homogen & unterhalbstetig
Status vor 2h 33m 6. Gonozal_IX
ULinAAb/Vielfachheiten Geo u. Algebr.
Status vor 4h 19m 2. Diophant
ULinASon/Lineare Optimierung
Status vor 19h 26m 6. matux MR Agent
OpRe/Opti:Min.problem:lösbar,unlösb
Status vor 1d 13h 34m 12. HJKweseleit
S8-10/Dezimalbruchdarstellungen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]