matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenResultierende
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Resultierende
Resultierende < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Resultierende: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Mi 25.10.2017
Autor: Valkyrion

Aufgabe
An einem Mast greifen 4 Kräfte an, die in einer Ebene liegen:
[mm] |F_{1}|= [/mm] 380 N; [mm] |F_{2}| [/mm] = 400 N; [mm] |F_{4}| [/mm] = 440 N;
Winkel zwischen [mm] F_{1} [/mm] & [mm] F_{2} \alpha [/mm] = 80°;
Winkel zwischen [mm] F_{2} [/mm] & [mm] F_{3} \beta [/mm] = 120°;
Winkel zwischen [mm] F_{3} [/mm] & [mm] F_{4} \gamma [/mm] = 70°

ges.: Betrag & Richtung der Resultierenden Kraft [mm] F_{R} [/mm]

1. In der Lösung wird davon ausgegangen, dass [mm] F_{1} [/mm] mit der x-Achse einen Winkel von 10° einschliesst. Woran erkennt man dass. Ich bin jetzt mal davon ausgegangen, dass [mm] F_{1} [/mm] identisch mit der x-Achse ist (Also [mm] F_{1} [/mm] = [mm] \vektor{380 \\ 0}). [/mm] Geht das auch?

2. Die Komponenten von [mm] F_{2} [/mm] berechne ich dann über cos(80°) bzw. sin(80°) * 400. Wie rechne ich aber [mm] F_{3} [/mm] aus?

        
Bezug
Resultierende: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Mi 25.10.2017
Autor: angela.h.b.


> An einem Mast greifen 4 Kräfte an, die in einer Ebene
> liegen:
>  [mm]|F_{1}|=[/mm] 380 N; [mm]|F_{2}|[/mm] = 400 N; [mm]|F_{4}|[/mm] = 440 N;
>  Winkel zwischen [mm]F_{1}[/mm] & [mm]F_{2} \alpha[/mm] = 80°;
>  Winkel zwischen [mm]F_{2}[/mm] & [mm]F_{3} \beta[/mm] = 120°;
>  Winkel zwischen [mm]F_{3}[/mm] & [mm]F_{4} \gamma[/mm] = 70°
>
> ges.: Betrag & Richtung der Resultierenden Kraft [mm]F_{R}[/mm]
>  1. In der Lösung wird davon ausgegangen, dass [mm]F_{1}[/mm] mit
> der x-Achse einen Winkel von 10° einschliesst. Woran
> erkennt man dass. Ich bin jetzt mal davon ausgegangen, dass
> [mm]F_{1}[/mm] identisch mit der x-Achse ist (Also [mm]F_{1}[/mm] =
> [mm]\vektor{380 \\ 0}).[/mm] Geht das auch?

Hallo,

sofern es keine Vorgaben gibt, kannst Du Dein Koordinatensystem legen, wie Du willst.

>  
> 2. Die Komponenten von [mm]F_{2}[/mm] berechne ich dann über
> cos(80°) bzw. sin(80°) * 400. Wie rechne ich aber [mm]F_{3}[/mm]
> aus?

Du kannst [mm] F_3 [/mm] nicht ausrechnen.
Ich glaube, daß die Angabe in der Aufgabenstellung vergessen wurde.

LG Angela


Bezug
                
Bezug
Resultierende: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mi 25.10.2017
Autor: Valkyrion

OK, danke, und wie sieht es mit meiner ersten Frage aus?

Bezug
                        
Bezug
Resultierende: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Mi 25.10.2017
Autor: leduart

Hallo
wenn es weder Zeichnung noch weitere Angaben gibt kannst du eine der Kräften z.B [mm] F_1 [/mm] in ner beliebigen Richtung legen.
Nur wieso der Mast?
so wie es da steht, kannst du ohne [mm] F_3 [/mm] nix ausrechnen, und man muss alle Kräfte an einem Punkt ansetzen.
hast du uns die vollständige Aufgabenstellung  einschließlich - falls vorhanden- einer Zeichnung
gepostet?
Gruß leduart

Bezug
                                
Bezug
Resultierende: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Mi 25.10.2017
Autor: Valkyrion

Ja, ich habe die Aufgabenstellung komplett und richtig übernommen. In meiner Buchauflage gibt es zu [mm] F_{3} [/mm] keine weiteren Angaben und eine Zeichnung gibt es auch nicht. Habe aber diese Aufgabe zwischenzeitlich noch mal an anderer Stelle gefunden, wo [mm] F_{3} [/mm] mit einem Betrag von 300 N angegeben wird. Dort ist auch eine Skizze ( [Dateianhang nicht öffentlich] ) dabei, die aber eher meine Lsöung nahelegt (nämlich dass [mm] F_{1} [/mm] auf der x-Achse liegt).
In der Lösung wird aber auch [mm] F_{1x} [/mm] durch cos(10°)*300 berechnet. Daher bleibt meine erste Frage bestehen: Wie komme ich auf die 10° und muss ich das zwingend so machen?
Ich geb hier gleich mal meinen Lösungsansatz mit an:
[mm] F_{1} [/mm] =  [mm] \vektor{380 \\ 0}; [/mm]
[mm] F_{2} [/mm] =  [mm] \vektor{cos(80°)*400 \\ sin(80°)*400} [/mm] = [mm] \vektor{69,46 \\ 393,92}; [/mm]
[mm] F_{3} [/mm] =  [mm] \vektor{cos(200°)*300 \\ sin(200°)*300} [/mm] = [mm] \vektor{-281,91 \\ -102,61}; [/mm]
[mm] F_{4} [/mm] =  [mm] \vektor{0 \\ 440}; [/mm]
Zu [mm] F_{R} [/mm] zusammengerechnet erhalte ich [mm] F_{R} [/mm] = [mm] \vektor{167,55 \\ 731,32}; [/mm]

[mm] |F_{R}| [/mm] = 750 N
[mm] \varphi= arctan(\bruch{731,32}{167,55}) [/mm] = 77,1°

Laut Lösung müsste aber
[mm] |F_{R}| [/mm] = 224 N
[mm] \varphi= [/mm] -31,59°

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                                        
Bezug
Resultierende: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mi 25.10.2017
Autor: angela.h.b.


> Ja, ich habe die Aufgabenstellung komplett und richtig
> übernommen. In meiner Buchauflage gibt es zu [mm]F_{3}[/mm] keine
> weiteren Angaben und eine Zeichnung gibt es auch nicht.
> Habe aber diese Aufgabe zwischenzeitlich noch mal an
> anderer Stelle gefunden, wo [mm]F_{3}[/mm] mit einem Betrag von 300
> N angegeben wird. Dort ist auch eine Skizze (
> [Dateianhang nicht öffentlich] ) dabei, die aber eher meine Lsöung
> nahelegt (nämlich dass [mm]F_{1}[/mm] auf der x-Achse liegt).
>  In der Lösung wird aber auch [mm]F_{1x}[/mm] durch cos(10°)*300
> berechnet. Daher bleibt meine erste Frage bestehen: Wie
> komme ich auf die 10° und muss ich das zwingend so
> machen?

Hallo,

wenn Du das Koordinatensystem so legst, daß [mm] F_1 [/mm] entlang der x-Achse liegt, ist da nichts mit 10°.

>  Ich geb hier gleich mal meinen Lösungsansatz mit an:
>  [mm]F_{1}[/mm] =  [mm]\vektor{380 \\ 0};[/mm]
>  [mm]F_{2}[/mm] =  
> [mm]\vektor{cos(80°)*400 \\ sin(80°)*400}[/mm] = [mm]\vektor{69,46 \\ 393,92};[/mm]
>  
> [mm]F_{3}[/mm] =  [mm]\vektor{cos(200°)*300 \\ sin(200°)*300}[/mm] =
> [mm]\vektor{-281,91 \\ -102,61};[/mm]
>  [mm]F_{4}[/mm] =  [mm]\vektor{0 \\ 440};[/mm]

Bei Deinem Koordinatensystem müßte es [mm] \red{-}440 [/mm] heißen.

Schau, ob es damit paßt.

LG Angela

>  
> Zu [mm]F_{R}[/mm] zusammengerechnet erhalte ich [mm]F_{R}[/mm] =
> [mm]\vektor{167,55 \\ 731,32};[/mm]
>  
> [mm]|F_{R}|[/mm] = 750 N
>  [mm]\varphi= arctan(\bruch{731,32}{167,55})[/mm] = 77,1°
>  
> Laut Lösung müsste aber
>  [mm]|F_{R}|[/mm] = 224 N
>  [mm]\varphi=[/mm] -31,59°


Bezug
                                                
Bezug
Resultierende: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:56 Do 26.10.2017
Autor: Valkyrion

<Kopfklatsch> klar; es muss -440 heißen;
Danke!
Und schon funktioniert's; zumindest was den Betrag angeht;
Der Richtungswinkel ist natürlich ebenfalls um 10° verschoben, was mir aber natürlich auch logisch erscheint. Ich nehme an bei dieser Art der Aufgabenstellung gibt es für den Richtungswinkel unendlich viele Lösungen - je nachdem wo man den ersten Vektor ansetzt!?

Bezug
                                                        
Bezug
Resultierende: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Do 26.10.2017
Autor: angela.h.b.


> <Kopfklatsch> klar; es muss -440 heißen;
>  Danke!
>  Und schon funktioniert's; zumindest was den Betrag angeht;
> Der Richtungswinkel ist natürlich ebenfalls um 10°
> verschoben, was mir aber natürlich auch logisch erscheint.
> Ich nehme an bei dieser Art der Aufgabenstellung gibt es
> für den Richtungswinkel unendlich viele Lösungen - je
> nachdem wo man den ersten Vektor ansetzt!?

Klar hängt die Position der Resultierenden davon ab, wie man den ersten Vektor ins Koordinatensystem legt.
Aber wie auch immer man das tut: der Winkel zwischen Resultierender und dem ersten Vektor sollte immer gleich sein.
Diesen anzugeben fände ich sinnvoll.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 12m 1. Filza
UAnaRn/Integral berechnen
Status vor 54m 8. Diophant
MSons/Induktion
Status vor 2h 08m 4. Gonozal_IX
UStoc/Verteilungsfunktion
Status vor 2h 45m 2. Diophant
UAnaR1FolgReih/n-te Partialsumme
Status vor 2h 57m 8. sancho1980
MSons/Zeigen, dass Formel gilt
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]