matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/HypothesentestsSigma-Intervalle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistics" - Sigma-Intervalle
Sigma-Intervalle < Statistics < Probability/Statisti < Grades 11-12 < School < Maths <
View: [ threaded ] | ^ Forum "Statistik/Hypothesentests"  | ^^ all forums  | ^ Tree of Forums  | materials

Sigma-Intervalle: Rückfrage
Status: (Question) answered Status 
Date: 18:59 Mo 20/02/2017
Author: Hanz

Aufgabe
Eine Stadt plant den Bau eines Schwimmbads. Im Bauamt nimmt man an, dass etwa 45% der Bürger diese Maßnahme begrüßen werden. Eine Schülergruppe glaubt nicht, dass der Prozentsatz der Zustimmenden nur so gering sein soll und führt eine Befragung von 1000 Personen in der Innenstadt durch.
Bestimme das Sicherheitsintervall mit der Wahrscheinlichkeit von 95%, wenn die Annahme der Stadt stimmen soll.

Ich habe n=1000, p=0,45 und den Sigma-Wert von 1,96 gegeben.

Intervall: [mm] [\mu-1,96*\sigma; \mu+1,96*\sigma] [/mm] = [419,165; 480,835]

Alternativ kann ich das doch auch mit relativen Zahlen machen:

[mm] [p-1,96*\frac{\sigma}{n}; p+1,96*\frac{\sigma}{n}] [/mm] = [0,419165; 0,480835]

Absolute und relative Werte passen zusammen, alles ok.

Nun kommt meine eigentliche Frage: Mein Sitznachbar hat folgendes gerechnet:
n=1000, X/n=0,45 und eben sigma-Wert von 1,96

Dann: [mm] |\frac{X}{n}-p|\leq1,96*\frac{\sigma}{n} [/mm]
= [mm] |0,45-p|\leq1,96*\frac{\sqrt{1000*p*(1-p)}}{1000} [/mm]
=[0,419415; 0,480968]

Die Ergebnisse sind ja recht ähnlich, aber kann ich mein p einfach als X/n wählen und es dann so rechnen wie er???

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=576277

        
Bezug
Sigma-Intervalle: Antwort
Status: (Answer) finished Status 
Date: 20:11 Mo 20/02/2017
Author: Diophant

Hallo,

> Eine Stadt plant den Bau eines Schwimmbads. Im Bauamt nimmt
> man an, dass etwa 45% der Bürger diese Maßnahme
> begrüßen werden. Eine Schülergruppe glaubt nicht, dass
> der Prozentsatz der Zustimmenden nur so gering sein soll
> und führt eine Befragung von 1000 Personen in der
> Innenstadt durch.
> Bestimme das Sicherheitsintervall mit der
> Wahrscheinlichkeit von 95%, wenn die Annahme der Stadt
> stimmen soll.
> Ich habe n=1000, p=0,45 und den Sigma-Wert von 1,96
> gegeben.

Um bei solchen Fragen zielführend antworten zu können, wäre es auch immer gut zu wissen, welche Rechenhilfsmittel zugelassen waren.

-
>

> Intervall: [mm][\mu-1,96*\sigma; \mu+1,96*\sigma][/mm] = [419,165;
> 480,835]

>

Ich habe das mit der CAS-Kristallkugel nachgerechnet. Das Resultat war, dass die Rechnung stimmt und du eine Normalverteilung zugrunde gelegt hast.

> Alternativ kann ich das doch auch mit relativen Zahlen
> machen:

>

> [mm][p-1,96*\frac{\sigma}{n}; p+1,96*\frac{\sigma}{n}][/mm] =
> [0,419165; 0,480835]

>

> Absolute und relative Werte passen zusammen, alles ok.

Ja nun, das ist im Prinzip die gleiche Rechnung wie oben, von daher verwundert es nicht, dass auch die Resultate übereinstimmen.

> Nun kommt meine eigentliche Frage: Mein Sitznachbar hat
> folgendes gerechnet:
> n=1000, X/n=0,45 und eben sigma-Wert von 1,96

>

> Dann: [mm]|\frac{X}{n}-p|\leq1,96*\frac{\sigma}{n}[/mm]
> = [mm]|0,45-p|\leq1,96*\frac{\sqrt{1000*p*(1-p)}}{1000}[/mm]
> =[0,419415; 0,480968]

>

> Die Ergebnisse sind ja recht ähnlich, aber kann ich mein p
> einfach als X/n wählen und es dann so rechnen wie er???

Auch das ist offensichtlich eine zu deiner äquivalente Rechnung (weshalb?). In allen Fällen wurde die Standardabweichung der Binomialverteilung als Schätzer für die tatsächliche Standardabweichung herangezogen. Wenn man die obige Ungleichung löst, dann bekommt man exakt deine obigen Resultate und nicht die angegebenen. Zumindest mein CAS sagt das...


Gruß, Diophant

Bezug
View: [ threaded ] | ^ Forum "Statistik/Hypothesentests"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 15h 43m 2. fred97
UAnaR1FunkDiff/Polynomfunktion differenzierba
Status vor 15h 56m 1. Stephan30
Maxima/Indizes zählen mit Funktion
Status vor 17h 32m 1. mathenoob3000
UStoc/Markov Kette: Definitionen
Status vor 20h 33m 1. tc_engineer
Algebra/Hash für Bloom-Filter
Status vor 22h 14m 4. Diophant
ULinASon/Lineare Optimierung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]