matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieSigma Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maßtheorie" - Sigma Algebra
Sigma Algebra < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 Di 17.10.2017
Autor: TheBozz-mismo

Aufgabe
Seien [mm] \Omega \subset \IR [/mm] und E= { [mm] A\subset \Omega [/mm] | A endlich }. Zeigen Sie, dass [mm] \sigma(E)= [/mm] { A [mm] \subset \Omega [/mm] | A oder [mm] A^c [/mm] abzählbar }

Hallo, ich benötige Hilfe bei der Aufgabe und generell beim Verständnis von Sigma-Algebren.
Ich muss 2 Dinge zeigen: Einmal, dass [mm] \sigma(E) [/mm] einen Sigma-Algebra ist und dann muss ich noch zeigen, dass es die kleinste Sigma-Algebra ist, die E enthält.
Abzählbar bedeutet, dass es die gleiche Mächtigkeit hat wie die natürlichen Zahlen hat.
Da die Sigma-Algebra ja E enthält, müssen alle Mengen endlich sein nach Definition.
Zu 1) [mm] \emptyset \in \sigma(E), [/mm] da [mm] \emptyset [/mm] = [mm] \Omega^c [/mm] abzählbar ist
Zu 2) Wenn A in der Sigma-Algebra liegt, dann soll auch das Komplement drinliegen. Folgt ja direkt aus der Definition der menge
Zu 3) Fallunterscheidung. Wenn alle [mm] A_i [/mm] abzählbar sind, dann auch die Vereinigung. Wenn ein j existiert, sd. [mm] A^c_j [/mm] abzählbar ist, aber nicht [mm] A_j [/mm] , so ist [mm] (\bigcup_{j \in \IN}^{} A_j )^c =\bigcap_{j\in\IN}^{}A^c_j [/mm] und damit wieder in der Menge.

Soweit ok meine Gedanken?

Mit freundlichem Gruß

TheBozz-mismo

        
Bezug
Sigma Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:30 Di 17.10.2017
Autor: Diophant

Hallo,

> Seien [mm]\Omega \subset \IR[/mm] und E= { [mm] A\subset \Omega [/mm] | A endlich }. Zeigen Sie...

zum besseren Verständnis: was meint das Wort 'endlich' an dieser Stelle? Wenn die Menge A endlich ist, ist sie ja insbesondere auch abzählbar, insofern kann ich den Sinn der Aufgabe noch nicht so ganz erkennen.

EDIT: das hat sich erledigt, ich habe meinen Denk- bzw. Lesefehler selbst entdeckt.

Gruß, Diophant

Bezug
        
Bezug
Sigma Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Di 17.10.2017
Autor: donquijote


> Seien [mm]\Omega \subset \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

und E= { [mm]A\subset \Omega[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

| A

> endlich }. Zeigen Sie, dass [mm]\sigma(E)=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ A [mm]\subset \Omega[/mm] |

> A oder [mm]A^c[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

abzählbar }

>  Hallo, ich benötige Hilfe bei der Aufgabe und generell
> beim Verständnis von Sigma-Algebren.
>  Ich muss 2 Dinge zeigen: Einmal, dass [mm]\sigma(E)[/mm] einen
> Sigma-Algebra ist und dann muss ich noch zeigen, dass es
> die kleinste Sigma-Algebra ist, die E enthält.
>  Abzählbar bedeutet, dass es die gleiche Mächtigkeit hat
> wie die natürlichen Zahlen hat.
>  Da die Sigma-Algebra ja E enthält, müssen alle Mengen
> endlich sein nach Definition.
>  Zu 1) [mm]\emptyset \in \sigma(E),[/mm] da [mm]\emptyset[/mm] = [mm]\Omega^c[/mm]
> abzählbar ist
>  Zu 2) Wenn A in der Sigma-Algebra liegt, dann soll auch
> das Komplement drinliegen. Folgt ja direkt aus der
> Definition der menge
>  Zu 3) Fallunterscheidung. Wenn alle [mm]A_i[/mm] abzählbar sind,
> dann auch die Vereinigung. Wenn ein j existiert, sd. [mm]A^c_j[/mm]
> abzählbar ist, aber nicht [mm]A_j[/mm] , so ist [mm](\bigcup_{j \in \IN}^{} A_j )^c =\bigcap_{j\in\IN}^{}A^c_j[/mm]
> und damit wieder in der Menge.
>  
> Soweit ok meine Gedanken?

Hallo,
1)-3) zeigt, dass das oben definierte [mm]\sigma(E)[/mm] eine [mm]\sigma[/mm]-Algebra ist. Es fehlt die Begründung dafür, dass dies die kleinste [mm]\sigma[/mm]-Algebra ist, die alle endlichen Mengen enthält (folgt daraus, dass sich jede abzählbare Menge als abzählbare Vereinigung endlicher Mengen schreiben lässt).

>  
> Mit freundlichem Gruß
>  
> TheBozz-mismo


Bezug
                
Bezug
Sigma Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:02 Mi 18.10.2017
Autor: TheBozz-mismo

Super. Danke für das Argument.

Mit freundlichem Gruß

TheBozz-mismo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]