matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenTridiagonale Matrix - LU
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Matrices" - Tridiagonale Matrix - LU
Tridiagonale Matrix - LU < Matrices < Uni-LinA u. Algebra < University < Maths <
View: [ threaded ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ all forums  | ^ Tree of Forums  | materials

Tridiagonale Matrix - LU: Frage & Tipp
Status: (Question) answered Status 
Date: 21:52 Do 02/11/2017
Author: rem

Aufgabe
Let A [mm] \in \IR^{n\times n} [/mm] be a tridiagonal matrix of the form

A = [mm] \pmat{ a_1 & b_2 & 0 & ...& 0 \\ c_2 & a_2 & b_2 & ... & ...\\ 0 & ... & ... & ... & 0 \\ ... & ... & c_{n-1} & a_{n-1} & b_{n-1} \\ 0 & ... & 0 & c_n & a_n }, [/mm]

with [mm] a_k, b_k, c_k \ne [/mm] 0, for all k = 1, ..., n.
If the matrix is strictly diagonally dominant, it admits a LU factorization where the matrices L and U have the special form

L = [mm] \pmat{ d_1 & 0 & ... & ...& 0 \\ c_2 & d_2 & ... & ... & ...\\ 0 & ... & ... & ... & ... \\ ... & ... & c_{n-1} & d_{n-1} & 0 \\ 0 & ... & 0 & c_n & a_n }, [/mm]

U = [mm] \pmat{ 1 & e_1 & 0 & ...& 0 \\0 & 1 & e_2 & ... & ...\\ ... & ... & ... & ... & 0 \\ ... & ... & ... & 1 & e_{n-1} \\ 0 & ... & ... & 0 & 1 }. [/mm]

Write an algorithm for computing their entries [mm] d_k [/mm] and [mm] e_k, [/mm] k = 1, ..., n. How many operations are required?

Hallo!

Was mich an diesem Beispiel verwirrt ist zum einen die 1er Diagonal in der oberen Dreicksmatrix U sowie das Element [mm] a_n [/mm] in der unteren Dreiecksmatrix L. Im Internet und diversen Büchern gib es zu genau diesem Thema einiges an Material allerdings ist dort die 1er Diagonale in der unteren Dreiecksmatrix. Kann es sein das [mm] a_n [/mm] in Matrix L ein Fehler ist? Bin für jede Hilfe/Anregung dankbar!

LG

        
Bezug
Tridiagonale Matrix - LU: Antwort
Status: (Answer) finished Status 
Date: 01:06 Fr 03/11/2017
Author: Fulla


> Let A [mm]\in \IR^{n\times n}[/mm] be a tridiagonal matrix of the
> form

>

> A = [mm]\pmat{ a_1 & b_2 & 0 & ...& 0 \\ c_2 & a_2 & b_2 & ... & ...\\ 0 & ... & ... & ... & 0 \\ ... & ... & c_{n-1} & a_{n-1} & b_{n-1} \\ 0 & ... & 0 & c_n & a_n },[/mm]

>

> with [mm]a_k, b_k, c_k \ne[/mm] 0, for all k = 1, ..., n.
> If the matrix is strictly diagonally dominant, it admits a
> LU factorization where the matrices L and U have the
> special form

>

> L = [mm]\pmat{ d_1 & 0 & ... & ...& 0 \\ c_2 & d_2 & ... & ... & ...\\ 0 & ... & ... & ... & ... \\ ... & ... & c_{n-1} & d_{n-1} & 0 \\ 0 & ... & 0 & c_n & a_n },[/mm]

>

> U = [mm]\pmat{ 1 & e_1 & 0 & ...& 0 \\0 & 1 & e_2 & ... & ...\\ ... & ... & ... & ... & 0 \\ ... & ... & ... & 1 & e_{n-1} \\ 0 & ... & ... & 0 & 1 }.[/mm]

>

> Write an algorithm for computing their entries [mm]d_k[/mm] and [mm]e_k,[/mm]
> k = 1, ..., n. How many operations are required?
> Hallo!

>

> Was mich an diesem Beispiel verwirrt ist zum einen die 1er
> Diagonal in der oberen Dreicksmatrix U sowie das Element
> [mm]a_n[/mm] in der unteren Dreiecksmatrix L. Im Internet und
> diversen Büchern gib es zu genau diesem Thema einiges an
> Material allerdings ist dort die 1er Diagonale in der
> unteren Dreiecksmatrix. Kann es sein das [mm]a_n[/mm] in Matrix L
> ein Fehler ist? Bin für jede Hilfe/Anregung dankbar!


Hallo rem,

ich denke auch, dass das [mm] $a_n$ [/mm] ein Fehler ist. Denn sonst berechnete sich der Eintrag [mm] $a_{n,n}$ [/mm] zu [mm] $c_n\cdot e_{n-1}+a_n$, [/mm] d.h. [mm] $c_n\cdot e_{n-1}=0$, [/mm] bzw., da [mm] $c_k\ne [/mm] 0$ bedeutet das, dass [mm] $e_{n-1}=0$. [/mm] Das ist glaube ich nicht beabsichtigt. Da sollte ein [mm] $d_n$ [/mm] stehen. (Aber frag vielleicht sicherheitshalber nochmal nach...)

Ob die 1er jetzt in L oder U stehen ist egal. Die [mm] $d_k$ [/mm] und [mm] $e_k$ [/mm] fallen je nach dem natürlich anders aus! Wichtig ist nur, dass es möglich ist, so eine Zerlegung zu finden, bei der eine der beiden Matrizen 1er auf der Diagonalen hat. Dadurch kannst du eben der Reihe nach die [mm] $d_k$ [/mm] und [mm] $e_k$ [/mm] berechnen.

Ich habe da jetzt nicht rumgerechnet, aber ich würde erstmal versuchen mit dem [mm] $a_n$ [/mm] in L zu rechnen. Wenn das geht, super! Wenn das zu Poblemen führt, rechne mit einem [mm] $d_n$ [/mm] an der Stelle.
Ich vermute aber, dass das [mm] $a_n$ [/mm] die Sache sogar einfacher macht...


Lieben Gruß,
Fulla

Bezug
View: [ threaded ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 1h 42m 5. fred97
MaßTheo/Metrischer Raum, Offene Mengen
Status vor 9h 51m 3. Gonozal_IX
SIntRech/Stammfunktion/Integralfunktion
Status vor 10h 37m 2. matux MR Agent
OpRe/Reihenfolgeproblem
Status vor 12h 50m 56. HJKweseleit
MSons/Kann man beim Roulette verlier
Status vor 17h 04m 4. M.Rex
UDiskrMath/Türme von Hanoi (4Stäbe)
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]