matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Urnenmodell Gleichfarbigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Statistik (Anwendungen)" - Urnenmodell Gleichfarbigkeit
Urnenmodell Gleichfarbigkeit < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenmodell Gleichfarbigkeit: Formelmäßige Herleitung
Status: (Frage) beantwortet Status 
Datum: 03:00 Sa 26.03.2016
Autor: schurik01

Aufgabe
Aus einer Urne mit 32 Kugeln mit 8 verschiedenen Farben (jeweils 4 Kugeln von einer Farbe) werden Kugeln ohne Zurücklegen gezogen.

a) Wie groß ist die Wahrscheinlichkeit dafür, dass beim Ziehen von 5 Kugeln, eine Farbe genau zwei Mal vorkommt?

b) Wie groß ist die Wahrscheinlichkeit dafür, dass beim Ziehen von 9 Kugeln, genau vier Kugeln dieselbe Farbe haben


Ich habe meine Problemstellung auf ein Urnenmodell übertragen.
Laut Monte-Carlo-Simulation müssten für a) ca. 27% und für b) 47%.
Wo ich mir nicht sicher bin, ob man mit einer formelmäßigen Beschreibung ebenfalls zum selben Ziel kommen könnte. Die Hypergeometrische Verteilung scheint da zwar der richtige Ansatz zu sein, jedoch gelingt es mir nicht, daraus eine gesetzmäßige Formel herzuleiten, da man die Verschiedenen Farben unterschiedlich kombinieren kann. Für eure Hilfe bin ich euch sehr dankbar.

Eine Ergänzung zu meinen ersten Versuchen:

Bei meinen zwei Fragen handelt es sich eher darum, eine Gesetzmäßigkeit herauszubekommen:

- Wenn ich eine Kugel ziehe, hat diese 100% irgendeine Farbe
- Wenn ich zwei Kugeln ziehe, haben diese zu ca. 9.7% die gleiche Farbe und zu ca. 90.3% eine unterschiedliche:

P(2 [mm] Gleichfarbig)=\bruch{8* \vektor{4 \\ 2}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}}{\vektor{32 \\ 2}} [/mm]


so und in folgenden Schritten (k>2) versagt mein Verstand, wenn es um eine mathematische Formulierung geht:

Wenn ich drei Kugeln ziehe, besteht nach Monte-Carlo (MC) die Wahrscheinlichkeit von:
- ca. 1%, dass alle Farben gleich sind,
- ca. 27%, dass genau zwei gleichfarbige Kugeln vorliegen und
- ca. 72%, das alle Kugeln verschiedenfarbig sind

Wenn ich fünf Kugeln ziehe, können schon Mal nicht fünf gleichfarbige Kugeln gezogen werden. Daher liegt laut MC die folgende Wahrscheinlichkeit vor:
- ca. 1%, dass vier Kugeln gleichfarbig sind
- ca. 17%, dass drei Kugeln gleichfarbig sind und der Rest verschiedenfarbig,
- ca. 53%, dass zwei gleichfarbig gleichfarbig sind und Rest verschiedenfarbig und
- ca. 29%, dass alle Kugeln verschiedenfarbig sind

Anderes Beispiel:
Wenn ich neun Kugeln ziehe, können schon Mal keine 9 verschiedenfarbige Kugeln vorliegen. Auch können nicht 9 gleichfarbige (sondern max. 2 mal 4 + 1) Kugeln vorliegen. Daher folgt laut MC:

- ca. 0.05% für 4 gleichfarbige Kugeln + 4 gleichfarbige Kugeln + 1 verschiedenfarbige Kugel,
- ca. 3% für 4 gleichfarbige Kugeln + 3 gleichfarbig Kugeln+ 2 verschiedenfarbige Kugeln,
- ca. 22% für 4 gleichfarbige Kugeln, 2 gleichfarbige Kugeln + 3 verschiedenfarbige Kugeln,
- ca. 47% für 4 gleichfarbige Kugeln + 5 verschiedenfarbige Kugeln),
- ca. 25% für 3 gleichfarbige Kugeln + 3 gleichfarbige Kugeln + drei verschiedenfarbige Kugeln und
- ca. 3% für 3 gleichfarbige Kugeln + 2 gleichfarbige Kugeln + 4 verschiedenfarbige

Wie man erkennen kann, interessieren mich die Farbkonstellationen mit ihrer Auftrittswahrscheinlichkeit. Es wirkt für mich persönlich ziemlich tricky. Allein das Problem klar zu formulieren hat etwas gedauert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Urnenmodell Gleichfarbigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:41 Sa 26.03.2016
Autor: tobit09

Hallo schurik01 und herzlich [willkommenmr]!


(Liege ich richtig mit meiner Vermutung, dass es um ein Kartenspiel geht? ;-) )


Mir ist etwas unklar, von welchen Ereignissen genau du die Wahrscheinlichkeit suchst; daher frage ich lieber erst einmal nach, bevor ich mir Gedanken mache:


> Aus einer Urne mit 32 Kugeln mit 8 verschiedenen Farben
> (jeweils 4 Kugeln von einer Farbe) werden Kugeln ohne
> Zurücklegen gezogen.
>  
> a) Wie groß ist die Wahrscheinlichkeit dafür, dass beim
> Ziehen von 5 Kugeln, eine Farbe genau zwei Mal vorkommt?

Meinst du eine bestimmte Farbe, die genau zwei Mal vorkommen soll (z.B. "genau 2 rote Kugeln gezogen"), oder geht es um das Ereignis, dass mindestens eine Farbe genau zwei Mal vorkommt?


> b) Wie groß ist die Wahrscheinlichkeit dafür, dass beim
> Ziehen von 9 Kugeln, genau vier Kugeln dieselbe Farbe
> haben

Hier geht es um das Ereignis, dass unter den 9 Kugeln von mindestens einer Farbe alle 4 Kugeln vertreten sind?


Viele Grüße
Tobias

Bezug
                
Bezug
Urnenmodell Gleichfarbigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Sa 26.03.2016
Autor: schurik01

Hallo Tobi,

vielen Dank für deine schnelle Antwort.

(Nein, es handelt sich nicht um ein Kartenspiel, eher um ein produktionstechnisches Problem :)  )

Ich habe gehofft meine Frage etwas vereinfacht darstellen zu können. Leider ist es mir nicht gelungen. Daher formuliere ich meine Problemstellung etwas detaillierter.

Bei meinen zwei Fragen handelt es sich eher darum, eine Gesetzmäßigkeit herauszubekommen:

- Wenn ich eine Kugel ziehe, hat diese 100% irgendeine Farbe
- Wenn ich zwei Kugeln ziehe, haben diese zu ca. 9.7% die gleiche Farbe und zu ca. 90.3% eine unterschiedliche:

P(2 [mm] Gleichfarbig)=\bruch{8* \vektor{4 \\ 2}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}}{\vektor{32 \\ 2}} [/mm]


so und in folgenden Schritten (k>2) versagt mein Verstand, wenn es um eine mathematische Formulierung geht:

Wenn ich drei Kugeln ziehe, besteht nach Monte-Carlo (MC) die Wahrscheinlichkeit von:
- ca. 1%, dass alle Farben gleich sind,
- ca. 27%, dass genau zwei gleichfarbige Kugeln vorliegen und
- ca. 72%, das alle Kugeln verschiedenfarbig sind

Wenn ich fünf Kugeln ziehe, können schon Mal nicht fünf gleichfarbige Kugeln gezogen werden. Daher liegt laut MC die folgende Wahrscheinlichkeit vor:
- ca. 1%, dass vier Kugeln gleichfarbig sind
- ca. 17%, dass drei Kugeln gleichfarbig sind und der Rest verschiedenfarbig,
- ca. 53%, dass zwei gleichfarbig gleichfarbig sind und Rest verschiedenfarbig und
- ca. 29%, dass alle Kugeln verschiedenfarbig sind

Anderes Beispiel:
Wenn ich neun Kugeln ziehe, können schon Mal keine 9 verschiedenfarbige Kugeln vorliegen. Auch können nicht 9 gleichfarbige (sondern max. 2 mal 4 + 1) Kugeln vorliegen. Daher folgt laut MC:
- ca. 0.05% für 4 gleichfarbige Kugeln + 4 gleichfarbige Kugeln + 1 verschiedenfarbige Kugel,
- ca. 3% für 4 gleichfarbige Kugeln + 3 gleichfarbig Kugeln+ 2 verschiedenfarbige Kugeln,
- ca. 22% für 4 gleichfarbige Kugeln, 2 gleichfarbige Kugeln + 3 verschiedenfarbige Kugeln,
- ca. 47% für 4 gleichfarbige Kugeln + 5 verschiedenfarbige Kugeln),
- ca. 25% für 3 gleichfarbige Kugeln + 3 gleichfarbige Kugeln + drei verschiedenfarbige Kugeln und
- ca. 3% für 3 gleichfarbige Kugeln + 2 gleichfarbige Kugeln + 4 verschiedenfarbige

Wie man erkennen kann, interessieren mich die Farbkonstellationen mit ihrer Auftrittswahrscheinlichkeit. Es wirkt für mich persönlich ziemlich tricky. Allein das Problem klar zu formulieren hat etwas gedauert.

Bezug
        
Bezug
Urnenmodell Gleichfarbigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 So 27.03.2016
Autor: tobit09


> Bei meinen zwei Fragen handelt es sich eher darum, eine
> Gesetzmäßigkeit herauszubekommen:
>  
> - Wenn ich eine Kugel ziehe, hat diese 100% irgendeine
> Farbe
>  - Wenn ich zwei Kugeln ziehe, haben diese zu ca. 9.7% die
> gleiche Farbe und zu ca. 90.3% eine unterschiedliche:
>  
> P(2 [mm]Gleichfarbig)=\bruch{8* \vektor{4 \\ 2}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}\vektor{4 \\ 0}}{\vektor{32 \\ 2}}[/mm]

[ok]


> so und in folgenden Schritten (k>2) versagt mein Verstand,
> wenn es um eine mathematische Formulierung geht:
>  
> Wenn ich drei Kugeln ziehe, besteht nach Monte-Carlo (MC)
> die Wahrscheinlichkeit von:
>  - ca. 1%, dass alle Farben gleich sind,
>  - ca. 27%, dass genau zwei gleichfarbige Kugeln vorliegen
> und
>  - ca. 72%, das alle Kugeln verschiedenfarbig sind

Auch diese Werte passen gemäß "meiner" Formel (s.u.).


> Wenn ich fünf Kugeln ziehe, können schon Mal nicht fünf
> gleichfarbige Kugeln gezogen werden. Daher liegt laut MC
> die folgende Wahrscheinlichkeit vor:
>  - ca. 1%, dass vier Kugeln gleichfarbig sind
> - ca. 17%, dass drei Kugeln gleichfarbig sind und der Rest
> verschiedenfarbig,
>  - ca. 53%, dass zwei gleichfarbig gleichfarbig sind und
> Rest verschiedenfarbig und
>  - ca. 29%, dass alle Kugeln verschiedenfarbig sind

Du hast die folgende Fälle übersehen:
- Eine Farbe dreifach und eine Farbe zweifach vertreten.
- Zwei Farben jeweils doppelt vertreten, eine Farbe einmal.

Auch die Prozentzahlen stimmen demzufolge nicht ganz mit meinen überein.


> Anderes Beispiel:
> Wenn ich neun Kugeln ziehe, können schon Mal keine 9
> verschiedenfarbige Kugeln vorliegen. Auch können nicht 9
> gleichfarbige (sondern max. 2 mal 4 + 1) Kugeln vorliegen.
> Daher folgt laut MC:
>  - ca. 0.05% für 4 gleichfarbige Kugeln + 4 gleichfarbige
> Kugeln + 1 verschiedenfarbige Kugel,
>  - ca. 3% für 4 gleichfarbige Kugeln + 3 gleichfarbig
> Kugeln+ 2 verschiedenfarbige Kugeln,
> - ca. 22% für 4 gleichfarbige Kugeln, 2 gleichfarbige
> Kugeln + 3 verschiedenfarbige Kugeln,
>  - ca. 47% für 4 gleichfarbige Kugeln + 5
> verschiedenfarbige Kugeln),
>  - ca. 25% für 3 gleichfarbige Kugeln + 3 gleichfarbige
> Kugeln + drei verschiedenfarbige Kugeln und
>  - ca. 3% für 3 gleichfarbige Kugeln + 2 gleichfarbige
> Kugeln + 4 verschiedenfarbige

Hier scheint auch nicht alles zu passen; das habe ich aber nicht mehr näher untersucht.


Sei k die Anzahl der Ziehungen (also k eine natürliche Zahl mit [mm] $k\le [/mm] 32$).
Eine "Farbkonstellation" wie von dir anscheinend beabsichtigt, kann beschrieben werden durch ein Quadrupel [mm] $(n_4,n_3,n_2,n_1)$ [/mm] natürlicher Zahlen mit folgender Bedeutung:

         [mm] $n_4$ [/mm] Farben mit allen 4 Kugeln in der Ziehung vertreten
         [mm] $n_3$ [/mm] Farben mit genau 3 Kugeln in der Ziehung vertreten
         [mm] $n_2$ [/mm] Farben mit genau 2 Kugeln in der Ziehung vertreten
         [mm] $n_1$ [/mm] Farben mit genau 1 Kugel in der Ziehung vertreten

(Natürlich möchte ich nur solche Quadrupel zulassen, die einer tatsächlich möglichen Farbkonstellation entsprechen, für die also insbesondere [mm] $n_4*4+n_3*3+n_2*2+n_1*1=k$ [/mm] gilt ("die Anzahl der in der Ziehung vertretenen Kugeln ist k").)

Für jedes solche Quadrupel erhalten wir die gesuchte Wahrscheinlichkeit für eine entsprechende Farbkonstellation durch die Formel

        [mm] $\frac{\binom{8}{n_4}*\binom{8-n_4}{n_3}4^{n_3}*\binom{8-n_4-n_3}{n_2}6^{n_2}*\binom{8-n_4-n_3-n_2}{n_1}4^{n_1}}{\binom{32}{k}}$. [/mm]


Viele Grüße
Tobias

Bezug
                
Bezug
Urnenmodell Gleichfarbigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:22 Mo 28.03.2016
Autor: schurik01

Vielen Dank für deinen hohen Aufwand!
Bei der Formel habe ich noch einen Hänger. Wenn ich die geforderten Randbedingungen einhalten möchte, kann ich eine Ziehung von k=2 nicht abbilden, da ich dafür n1-n4 null setzen müsste und die gesamte Gleichung ebenfalls null wird.

Ferner interessiert mich sehr, welcher Bereich aus der Mathematik sich hierunter verbirgt. Allein mit dem Wissen über multivariate hypergeometrische Verteilungen kommt man ja nicht weiter.

Schöne Grüße und nochmals vielen Dankl!


Bezug
                        
Bezug
Urnenmodell Gleichfarbigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:21 Mo 28.03.2016
Autor: tobit09


> Bei der Formel habe ich noch einen Hänger. Wenn ich die
> geforderten Randbedingungen einhalten möchte, kann ich
> eine Ziehung von k=2 nicht abbilden, da ich dafür n1-n4
> null setzen müsste und die gesamte Gleichung ebenfalls
> null wird.

Im Falle k=2 gezogener Kugeln sind ja zwei Farbkonstellationen denkbar:
i) Eine Farbe doppelt vertreten.
ii) Zwei Farben je einmal vertreten.

Diese werden durch die Quadrupel
i) [mm] $(n_4,n_3,n_2,n_1)=(0,0,1,0)$ [/mm]
bzw.
ii) [mm] $(n_4,n_3,n_2,n_1)=(0,0,0,2)$ [/mm]
beschrieben.


> Ferner interessiert mich sehr, welcher Bereich aus der
> Mathematik sich hierunter verbirgt. Allein mit dem Wissen
> über multivariate hypergeometrische Verteilungen kommt man
> ja nicht weiter.

Im Kopf hatte ich ein Modell mit einer Laplace-Verteilung.
Gesucht war dann die Wahrscheinlichkeit nicht eines Ergebnisses (Elementarereignisses), sondern eines (durch ein Quadrupel repräsentiertes) Ereignisses.
Wie meist bei Laplace-Modellierungen läuft die Bestimmung der Wahrscheinlichkeit eines Ereignisses auf ein "Zähl-Problem" hinaus.
Den Zweig der Mathematik, der sich mit "Zähl-Problemen" beschäftigt, nennt man Kombinatorik.

(Auch zur Herleitung, dass (multivariate) hypergeometrische Verteilungen die gewünschte Anwendung haben, legt man gewöhnlich ein Modell mit einer Laplace-Verteilung zugrunde und löst dann ein kombinatorisches Problem.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 03m 10. HJKweseleit
GraphTheo/Hyperwürfel teilen
Status vor 5h 25m 3. matux MR Agent
UAlgGRK/Ringerweiterung
Status vor 5h 25m 2. Gonozal_IX
MaßTheo/Fast überall
Status vor 6h 44m 3. Schreim
USons/Quasireguläre Hexagone
Status vor 7h 34m 2. Diophant
DiffGlGew/Differentialgleichung lösen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]