matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorraum über C
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum über C
Vektorraum über C < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum über C: Denkanstoß/Tipp
Status: (Frage) beantwortet Status 
Datum: 14:29 So 17.12.2017
Autor: MichaelF.

Aufgabe
Sei V ein n-dimensionaler Vektorraum über [mm] \IC. [/mm] Sei W [mm] \subseteq [/mm] V ein n-dimensionaler [mm] \IR [/mm] -Untervektorraum. Zeigen sie, [mm] span_{\IC}(W)=V [/mm] genau dann, wenn W [mm] \cap [/mm] iW={0}, wobei [mm] i^{2}=-1. [/mm]

Leider habe ich noch kaum Ansätze und wäre über einen Denkanstoß sehr dankbar.
Vielen Dank schonmal im Voraus.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=582923

        
Bezug
Vektorraum über C: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Di 19.12.2017
Autor: angela.h.b.


> Sei V ein n-dimensionaler Vektorraum über [mm]\IC.[/mm] Sei W
> [mm]\subseteq[/mm] V ein n-dimensionaler [mm]\IR[/mm] -Untervektorraum.
> Zeigen sie, [mm]span_{\IC}(W)=V[/mm] genau dann, wenn W [mm]\cap[/mm] iW={0},
> wobei [mm]i^{2}=-1.[/mm]
> Leider habe ich noch kaum Ansätze und wäre über einen
> Denkanstoß sehr dankbar.


Hallo,

zu zeigen sind zwei Richtungen:

i) [mm] span_{\IC}(W)=V [/mm] ==> [mm] W\cap iW=\{0\} [/mm]
ii) [mm] W\cap iW=\{0\} [/mm] ==> [mm] span_{\IC}(W)=V [/mm]

zu i)
Sei [mm] B=\{w_1,...,w_n\} [/mm] eine Basis von W über [mm] \IR, [/mm]
und sei [mm] span_{\IC}(W)=V. [/mm]
Dann ist B auch eine Basis von V über [mm] \IC. [/mm]

Sei nun [mm] w\in W\cap [/mm] iW.

Dann ist [mm] w=\sum_{k=1}^nr_kw_k [/mm] mit [mm] r_k\in \IR. [/mm]
Weil w auch in iW ist, kann man w schreiben als [mm] w=i*\sum_{k=1}^ns_kw_k [/mm] mit [mm] s_k\in \IR. [/mm]

Ich denke, nun kommst Du weiter.


zu ii)
Sei [mm] W\cap iW=\{0\}, [/mm] und sei [mm] B=\{w_1,...,w_n\} [/mm] eine Basis von W über [mm] \IR. [/mm]

Zeige nun, daß B auch linear unabhängig über [mm] \IC [/mm] ist:

seien [mm] a_k,b_k \in \IR [/mm]
und [mm] 0=\summe_{k=1}^n(a_k+ib_k)w_k [/mm]
<==>
[mm] \underbrace{\summe_{k=1}^na_kw_k}_{\in W}=\underbrace{\sum_{k=1}^n(-ib_k)w_k}_{\in iW} [/mm]

Nun mach weiter!

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 0m 9. Diophant
ULinAAb/Schräg liegender Zylinder
Status vor 8h 59m 4. HJKweseleit
UAnaR1FolgReih/Konvergente Folgen
Status vor 11h 29m 5. sven1
UDiskrMath/Graph (3 dim. Gitter teilen)
Status vor 11h 33m 1. sven1
GraphTheo/Hyperwürfel teilen
Status vor 14h 51m 1. noglue
Algebra/Dimension berechnen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]