matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikVorwärts-Stabil, Beispiel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - Vorwärts-Stabil, Beispiel
Vorwärts-Stabil, Beispiel < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorwärts-Stabil, Beispiel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:28 Sa 10.10.2015
Autor: sissile

Aufgabe
Ein Beispiel zur Vorwärts-Stabilität:
Es sei [mm] f(x):=\sqrt{x+1} [/mm] - [mm] \sqrt{x}, x\ge [/mm] 0
f'(x)= [mm] \frac{1}{2 \sqrt{x+1}}-\frac{1}{2 \sqrt{x}} [/mm] = - [mm] \frac{\sqrt{x+1} -\sqrt{x}}{2 \sqrt{x+1} \sqrt{x}} [/mm]
(1) [mm] K_{rel}:= [/mm] | f'(x) * [mm] \frac{x}{f(x)}|= \frac{1}{2} \frac{\sqrt{x}}{\sqrt{x+1}}<\frac{1}{2} [/mm]
Die Funktion ist gut konditioniert und sollte sich daher genau auswerten lassen.
Es sei nun x [mm] \in [/mm] R und [mm] \overline{f} [/mm] (x) sei der folgene Algorithmus:
[mm] z_1= \Box(x+1) [/mm]
[mm] z_2= \Box\sqrt{z_1} [/mm]
[mm] z_3= \Box \sqrt{x} [/mm]
[mm] z_4= \Box(z_2 [/mm]  - [mm] z_3) [/mm]
[mm] \overline{f}= z_4 [/mm]

Dann gilt:
[mm] z_1= [/mm] (x+1) (1+ [mm] \epsilon_1) [/mm]
(2) [mm] z_2 [/mm] = [mm] \sqrt{z_2} (1+\epsilon_2)= \sqrt{(x+1)(1+\epsilon_1)}(1+ \epsilon_2) \approx \sqrt{(x+1)}(1+\frac{1}{2}\epsilon_1 [/mm] + [mm] \epsilon_2) [/mm]
[mm] z_3= [/mm] sqrt(x) [mm] (1+\epsilon_3) [/mm]
(2) [mm] z_4= (z_2-z_3)*(1+\epsilon_4) [/mm] = [mm] (\sqrt{x+1}-\sqrt{x}+\sqrt{x+1}(1/2 \epsilon_1 [/mm] + [mm] \epsilon_2) [/mm] - [mm] \epsilon_3 \sqrt{x}) [/mm] (1 + [mm] \epsilon_4) \approx \sqrt{x+1} [/mm] - [mm] \sqrt{x} [/mm] + [mm] \sqrt{x+1} (\frac{1}{2}\epsilon_1 [/mm] + [mm] \epsilon_2 [/mm] + [mm] \epsilon_4) [/mm] - [mm] \sqrt{x} (\epsilon_3 [/mm] + [mm] \epsilon_4)= \overline{f}(x) [/mm]

(3) Die Fehlerterme [mm] \epsilon_i [/mm] können negativ sein. Der absolute Gesamtfehler ist durch:
[mm] \frac{3}{2} \sqrt{x+1} [/mm] eps + [mm] \sqrt{x} [/mm] eps + [mm] (\sqrt{x+1} -\sqrt{x}) [/mm] eps
bestmöglich abgeschätzt. Also gilt:
[mm] |\frac{\overline{f}(x)-f(x)}{f(x)}| \le (\underbrace{\frac{3/2 \sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}}_{\approx 5x \mbox{für} x\rightarrow \infty} [/mm] +1) eps
Der Algorithmus [mm] \overline{f} [/mm] ist  nicht vorwärts stabil.



Hallo,
[]http://uni.walljumper.de/Sonstiges/nula_ss09_skript_kap_8_090710.pdf
S.16/17

Unsere Bezeichnungen:
eps ist die Maschienengenauigkeit
[mm] \Box(x)... [/mm] Rundung von x zur nächstgelegenen Maschinenzahl
[mm] \Box(x)=x(1+\epsilon) [/mm] mit [mm] |\epsilon| \le [/mm] eps

Frage 1:
Wie kommt man auf die schöne Form von [mm] K_{rel} [/mm] ??
Ich erhalte
[mm] K_{rel}:= [/mm] | f'(x) * [mm] \frac{x}{f(x)}| [/mm] = |- [mm] \frac{x(\sqrt{x+1}-\sqrt{x})}{(2 \sqrt{x+1}\sqrt{x})*(\sqrt{x+1}-\sqrt{x})}|= \frac{1}{2}| [/mm] - [mm] \frac{x \sqrt{x+1} - x \sqrt{x}}{x \sqrt{x} +\sqrt{x} - x \sqrt{x+1}}| [/mm]

Frage 2:
Wie wird in [mm] z_2 [/mm] und [mm] z_4 [/mm] jeweils approximiert?
Ich verstehe nicht wie man auf  [mm] \sqrt{(x+1)(1+\epsilon_1)}(1+ \epsilon_2) \approx \sqrt{(x+1)}(1+\frac{1}{2}\epsilon_1 [/mm] + [mm] \epsilon_2) [/mm] kommt.

Frage 3:
Wie kommt man nun auf diesen Gesamtfehler? Ab da an verstehe ich das gar nicht mehr ;((


Ich würde mich sehr freuen, wenn mir das Beispiel wer erklären könnte! Würde das gerne verstehen!

LG,
sissi

        
Bezug
Vorwärts-Stabil, Beispiel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 12.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Vorwärts-Stabil, Beispiel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Di 13.10.2015
Autor: HJKweseleit


> Ein Beispiel zur Vorwärts-Stabilität:
>  Es sei [mm]f(x):=\sqrt{x+1}[/mm] - [mm]\sqrt{x}, x\ge[/mm] 0
>  f'(x)= [mm]\frac{1}{2 \sqrt{x+1}}-\frac{1}{2 \sqrt{x}}[/mm] = -
> [mm]\frac{\sqrt{x+1} -\sqrt{x}}{2 \sqrt{x+1} \sqrt{x}}[/mm]
>  (1)
> [mm]K_{rel}:=[/mm] | f'(x) * [mm]\frac{x}{f(x)}|= \frac{1}{2} \frac{\sqrt{x}}{\sqrt{x+1}}<\frac{1}{2}[/mm]
>  
> Die Funktion ist gut konditioniert und sollte sich daher
> genau auswerten lassen.
>  Es sei nun x [mm]\in[/mm] R und [mm]\overline{f}[/mm] (x) sei der folgene
> Algorithmus:
>  [mm]z_1= \Box(x+1)[/mm]
>  [mm]z_2= \Box\sqrt{z_1}[/mm]
>  [mm]z_3= \Box \sqrt{x}[/mm]
>  
> [mm]z_4= \Box(z_2[/mm]  - [mm]z_3)[/mm]
>  [mm]\overline{f}= z_4[/mm]
>  
> Dann gilt:
>  [mm]z_1=[/mm] (x+1) (1+ [mm]\epsilon_1)[/mm]
>  (2) [mm]z_2[/mm] = [mm]\sqrt{z_2} (1+\epsilon_2)= \sqrt{(x+1)(1+\epsilon_1)}(1+ \epsilon_2) \approx \sqrt{(x+1)}(1+\frac{1}{2}\epsilon_1[/mm]
> + [mm]\epsilon_2)[/mm]
>  [mm]z_3=[/mm] sqrt(x) [mm](1+\epsilon_3)[/mm]
>  (2) [mm]z_4= (z_2-z_3)*(1+\epsilon_4)[/mm] =
> [mm](\sqrt{x+1}-\sqrt{x}+\sqrt{x+1}(1/2 \epsilon_1[/mm] +
> [mm]\epsilon_2)[/mm] - [mm]\epsilon_3 \sqrt{x})[/mm] (1 + [mm]\epsilon_4) \approx \sqrt{x+1}[/mm]
> - [mm]\sqrt{x}[/mm] + [mm]\sqrt{x+1} (\frac{1}{2}\epsilon_1[/mm] + [mm]\epsilon_2[/mm]
> + [mm]\epsilon_4)[/mm] - [mm]\sqrt{x} (\epsilon_3[/mm] + [mm]\epsilon_4)= \overline{f}(x)[/mm]
>  
> (3) Die Fehlerterme [mm]\epsilon_i[/mm] können negativ sein. Der
> absolute Gesamtfehler ist durch:
>   [mm]\frac{3}{2} \sqrt{x+1}[/mm] eps + [mm]\sqrt{x}[/mm] eps + [mm](\sqrt{x+1} -\sqrt{x})[/mm]
> eps
>  bestmöglich abgeschätzt. Also gilt:
>  [mm]|\frac{\overline{f}(x)-f(x)}{f(x)}| \le (\underbrace{\frac{3/2 \sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}}_{\approx 5x \mbox{für} x\rightarrow \infty}[/mm]
> +1) eps
>  Der Algorithmus [mm]\overline{f}[/mm] ist  nicht vorwärts stabil.
>  
>
> Hallo,
>  
> []http://uni.walljumper.de/Sonstiges/nula_ss09_skript_kap_8_090710.pdf
>  
> S.16/17
>  
> Unsere Bezeichnungen:
>  eps ist die Maschienengenauigkeit
>  [mm]\Box(x)...[/mm] Rundung von x zur nächstgelegenen
> Maschinenzahl
>  [mm]\Box(x)=x(1+\epsilon)[/mm] mit [mm]|\epsilon| \le[/mm] eps
>  
> Frage 1:
>  Wie kommt man auf die schöne Form von [mm]K_{rel}[/mm] ??
>  Ich erhalte
>   [mm]K_{rel}:=[/mm] | f'(x) * [mm]\frac{x}{f(x)}|[/mm] = |-
> [mm]\frac{x(\sqrt{x+1}-\sqrt{x})}{(2 \sqrt{x+1}\sqrt{x})*(\sqrt{x+1}-\sqrt{x})}|= \frac{1}{2}|[/mm]
> - [mm]\frac{x \sqrt{x+1} - x \sqrt{x}}{x \sqrt{x} +\sqrt{x} - x \sqrt{x+1}}|[/mm]
>  



Du darfst Zähler und Nenner nicht ausrechnen, sondern musst vorher kürzen:

[mm] |-\frac{x(\sqrt{x+1}-\sqrt{x})}{(2 \sqrt{x+1}\sqrt{x})*(\sqrt{x+1}-\sqrt{x})}| [/mm] nun die beiden hinteren Klammern gegeneinander wegkürzen!  = [mm] |-\frac{x}{(2 \sqrt{x+1}\sqrt{x})}| [/mm]




> Frage 2:
>  Wie wird in [mm]z_2[/mm] und [mm]z_4[/mm] jeweils approximiert?
>  Ich verstehe nicht wie man auf  
> [mm]\sqrt{(x+1)(1+\epsilon_1)}(1+ \epsilon_2) \approx \sqrt{(x+1)}(1+\frac{1}{2}\epsilon_1[/mm]
> + [mm]\epsilon_2)[/mm] kommt.





[mm] \sqrt{(1+\epsilon_1)}(1+ \epsilon_2) \approx [/mm] (1+0,5 [mm] \epsilon_1-Term [/mm] mit [mm] \epsilon_1^2 [/mm] usw.)*(1+ [mm] \epsilon_2)\approx 1+0,5\epsilon_1 [/mm] -Term mit [mm] \epsilon_1^2 [/mm] usw. + [mm] \epsilon_2 [/mm] + 0,5 [mm] \epsilon_1*\epsilon_2 [/mm] - ...), wobei Produkte aus Epsilons fast keine Rolle gegen epsilons spielen, da ihr Wert viel kleiner ist, verbleibt somit   [mm] \approx 1+0,5\epsilon_1 [/mm] + [mm] \epsilon_2 [/mm]



>  
> Frage 3:
>  Wie kommt man nun auf diesen Gesamtfehler? Ab da an
> verstehe ich das gar nicht mehr ;((
>  
>



Das bezieht sich offenbar auf
[mm] z_4 [/mm] = [mm] (\sqrt{x+1}-\sqrt{x}+\sqrt{x+1}(1/2 \epsilon_1+\epsilon_2)- \epsilon_3 \sqrt{x})(1 [/mm] + [mm] \epsilon_4)= (\sqrt{x+1}-\sqrt{x}+\sqrt{x+1}(1/2 \epsilon_1+\epsilon_2)- \epsilon_3 \sqrt{x})+(\sqrt{x+1}*\epsilon_4-\sqrt{x}*\epsilon_4+\sqrt{x+1}(1/2 \epsilon_1+\epsilon_2)*\epsilon_4- \epsilon_3 \sqrt{x}*\epsilon_4) [/mm]

[mm] \sqrt{x+1}-\sqrt{x} [/mm] ist fehlerfrei
[mm] \sqrt{x+1}(1/2 \epsilon_1+\epsilon_2) [/mm] hat maximal Fehler [mm] \sqrt{x+1}(1/2 [/mm] eps+eps)
[mm] \epsilon_3 \sqrt{x} [/mm] hat maximal Fehler [mm] eps*\sqrt{x} [/mm]
[mm] (\sqrt{x+1}-\sqrt{x})*\epsilon_4 [/mm] hat maximal Fehler [mm] (\sqrt{x+1}-\sqrt{x})*eps [/mm]

[mm] \sqrt{x+1}(1/2 \epsilon_1+\epsilon_2)*\epsilon_4 [/mm] und [mm] \epsilon_3 \sqrt{x}*\epsilon_4) [/mm] enthalten beide mindestens zweimal einen [mm] \epsilon-Faktor [/mm] und sind zu vernachlässigen.

Bleibt somit  [mm] \sqrt{x+1}(3/2 [/mm] eps)+ [mm] eps*\sqrt{x}+(\sqrt{x+1}-\sqrt{x})*eps [/mm]









> Ich würde mich sehr freuen, wenn mir das Beispiel wer
> erklären könnte! Würde das gerne verstehen!
>  
> LG,
>  sissi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]