matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikZweistufiges Zufallsexperiment
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Kombinatorik" - Zweistufiges Zufallsexperiment
Zweistufiges Zufallsexperiment < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zweistufiges Zufallsexperiment: Letze Nummer c
Status: (Frage) beantwortet Status 
Datum: 15:19 Mi 17.01.2018
Autor: genius123

Aufgabe
Für ein Zufallsexperiment benötigen wir einen (sechsseitigen) Würfel und 3 Urnen mit dem folgenden Inhalt:
Urne 1 enthält: 4 rote Kugeln und 2 grüne Kugeln. Urne 2 enthält: 2 rote Kugeln und 4 grüne Kugeln. Urne 3 enthält: 3 rote Kugel und 3 grüne Kugeln.
Es wird das folgende zweistufige Zufallsexperiment durchgeführt: Zuerst wird der W¨urfel geworfen und danach in Abh¨angigkeit von der gew¨urfelten Augenzahl wird eine Kugel aus einer der drei Urnen gezogen. Wurde 1 gewürfelt wird die Kugel aus Urne 1 gezogen. Bei 2 ,3  oder 4 ziehen wir die Kugel aus der Urne 2. Wird 5 oder 6 gew¨urfelt wird die Kugel aus Urne 3 gezogen.
(a) Zeichnen Sie den Wahrscheinlichkeitsbaum zu diesem Experiment.
(b) Wie groß ist die Wahrscheinlichkeit, dass eine gr¨une Kugel gezogen wird?
(c) Es wurde eine gr¨une Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die gew¨urfelte Augenzahl mindestens 4 war?

Ich hänge bei Nummer ca. für b bekomme ich 5/9 heraus und für c 90% also 0,9 kann das stimmen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


... diesen Text hier...

        
Bezug
Zweistufiges Zufallsexperiment: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Mi 17.01.2018
Autor: Diophant

Hallo,

> Für ein Zufallsexperiment benötigen wir einen
> (sechsseitigen) Würfel und 3 Urnen mit dem folgenden
> Inhalt:
> Urne 1 enthält: 4 rote Kugeln und 2 grüne Kugeln. Urne 2
> enthält: 2 rote Kugeln und 4 grüne Kugeln. Urne 3
> enthält: 3 rote Kugel und 3 grüne Kugeln.
> Es wird das folgende zweistufige Zufallsexperiment
> durchgeführt: Zuerst wird der W¨urfel geworfen und danach
> in Abh¨angigkeit von der gew¨urfelten Augenzahl wird eine
> Kugel aus einer der drei Urnen gezogen. Wurde 1 gewürfelt
> wird die Kugel aus Urne 1 gezogen. Bei 2 ,3 oder 4 ziehen
> wir die Kugel aus der Urne 2. Wird 5 oder 6 gew¨urfelt
> wird die Kugel aus Urne 3 gezogen.
> (a) Zeichnen Sie den Wahrscheinlichkeitsbaum zu diesem
> Experiment.
> (b) Wie groß ist die Wahrscheinlichkeit, dass eine
> gr¨une Kugel gezogen wird?
> (c) Es wurde eine gr¨une Kugel gezogen. Wie groß ist die
> Wahrscheinlichkeit, dass die gew¨urfelte Augenzahl
> mindestens 4 war?
> Ich hänge bei Nummer ca. für b bekomme ich 5/9 heraus

Das ist korrekt! [ok]

> und für c 90% also 0,9 kann das stimmen?

Nein, das kann nicht richtig sein. Es handelt sich um eine bedingte Wahrscheinlichkeit. Falls dir das (noch) nichts sagt, dann rechne mit deinem Wahrscheinlichkeitsbaum. Dabei ist zu beachten, dass die Wahrscheinlichkeit dafür, dass eine grüne Kugel aus Urne 2 gezogen wird hier nur 1/3 des ursprünglichen Wertes beträgt, da ja als geworfene Augenzahl (für diese Urne) nur die 4 zulässsig ist.

Als Lösungshinweis: es kommt sozusagen ein sehr ausgewogenes Ergebnis heraus. :-)


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 45m 7. donquijote
ULinAMat/Gruppe der inv. Matrizen
Status vor 1d 7h 34m 11. Al-Chwarizmi
STrigoFktn/Cosinus und Arc Cosinus
Status vor 1d 16h 33m 7. Diophant
UAnaR1FunkStetig/Stetigkeit im Nullpunkt
Status vor 3d 1. Prospekthuellen
UStoc/Galton-Watson mit max. Höhe
Status vor 4d 7. maggieNess
Taschenrechner/Tinspire Cx Cas Einstellungen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]