matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikÄquivalenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "" - Äquivalenz
Äquivalenz < < Logic < Logic and Set Theory < University < Maths <
View: [ threaded ] | ^ Forum "Aussagenlogik"  | ^^ all forums  | ^ Tree of Forums  | materials

Äquivalenz: Tipp
Status: (Question) answered Status 
Date: 15:39 Mi 18/10/2017
Author: monki

Aufgabe
Untersuchen Sie, ob zwei der Aussagen A,B,C äquivalent sind.

B: Ist f abstrahierbar und basisorientiert, so ist f nicht cellolitisch oder nicht deoduftig.

A: Ist f abstrahierbar und basisorientiert, so ist f weder cellolitisch noch deoduftig.

C:  Ist f cellolitisch und deoduftig, dann ist f nicht abstrahierbar und nicht basisorientiert.


Von A, B und C habe ich erstmal [mm] \neg [/mm] A, [mm] \neg [/mm] B und [mm] \neg [/mm] C aufgeschrieben. Dabei ist C [mm] \Rightarrow \neg [/mm] B. Beweise ich dies dann durch den Widerspruchsbeweis, oder gehe ich da anders vor?



-Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.-

        
Bezug
Äquivalenz: Antwort
Status: (Answer) finished Status 
Date: 02:23 Fr 20/10/2017
Author: tobit09

Hallo monki!


Ich kürze abstrahierbar, basisorientiert, cellolitisch und deoduftig mit a., b., c. bzw. d. ab.


> Untersuchen Sie, ob zwei der Aussagen A,B,C äquivalent
> sind.
>  
> B: Ist f abstrahierbar und basisorientiert, so ist f nicht
> cellolitisch oder nicht deoduftig.
>  
> A: Ist f abstrahierbar und basisorientiert, so ist f weder
> cellolitisch noch deoduftig.
>  
> C:  Ist f cellolitisch und deoduftig, dann ist f nicht
> abstrahierbar und nicht basisorientiert.

Genau genommen hängt die Antwort auf die Frage von den Bedeutungen von a., b., c. und d. ab.
Gemeint ist wohl: Untersuchen Sie, ob zwei der Aussagen unabhängig von der Bedeutung von a., b., c. und d. immer äquivalent sind.


> Dabei ist C [mm]\Rightarrow \neg[/mm] B.

Das scheint mir erst einmal nichts mit der Fragestellung aus der Aufgabe zu tun zu haben.
Und diese Implikation ist im Allgemeinen falsch:
Wenn etwa f weder a., noch b., noch c., noch d. ist, dann stimmt zwar Aussage C, aber nicht die Aussage [mm] $\neg [/mm] B$ (da $B$ zutrifft).


Wenn ich mich nicht vertan habe, sind i.A. keine zwei verschiedene der Aussagen A, B und C äquivalent.

Um z.B. einzusehen, dass $A$ und $B$ i.A. nicht äquivalent sind, betrachten wir etwa ein $f$ mit den Eigenschaften a., b. und c., aber nicht d.

Dann ist eine der Aussagen A und B wahr, die andere falsch.

Findest du heraus, welche der Aussagen A und B in diesem Fall wahr und welche falsch ist?


Suche dann ähnliche Beispiele dafür, dass B und C im Allgemeinen nicht äquivalent sind und dass A und C im Allgemeinen nicht äquivalent sind.


Viele Grüße
Tobias

Bezug
        
Bezug
Äquivalenz: Antwort
Status: (Answer) finished Status 
Date: 10:20 Fr 20/10/2017
Author: HJKweseleit

Am einfachsten löst man das Problem mit Hilfe einer Wahrheitstafel (0 = stimmt nicht, 1 = stimmt) in der Form

a  b  c  d  A  B  C  

0  0  0  0
0  0  0  1
0  0  1  0
0  0  1  1
0  1  0  0
0  1  0  1
0  1  1  0
0  1  1  1
1  0  0  0
1  0  0  1
1  0  1  0
1  0  1  1
1  1  0  0
1  1  0  1
1  1  1  0
1  1  1  1

Bezug
View: [ threaded ] | ^ Forum "Aussagenlogik"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 2h 14m 8. Diophant
ULinAAb/Permutationsgr./ Transposition
Status vor 4h 58m 62. Diophant
MSons/Kann man beim Roulette verlier
Status vor 7h 11m 2. matux MR Agent
DiffGlPar/Abschätzung
Status vor 8h 43m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 9h 11m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]