matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle Differentialgleichungenerhaltungsgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - erhaltungsgleichungen
erhaltungsgleichungen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erhaltungsgleichungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:04 Di 17.10.2006
Autor: kerli

Aufgabe
Löse Burgers Gleichung [mm] (u_{t} [/mm] + [mm] u*u_{x}=0) [/mm] für

[mm] u(x,0)=\begin{cases} 2, & \mbox{für } x<0 \\ 1, & \mbox{für } 02 \end{cases} [/mm]

Da an beiden Unstetigkeiten [mm] u_{l} [/mm] > [mm] u_{r} [/mm] gilt, ist die schwache Lösung eindeutig. Mein Problem ist aber nun, wie genau sieht diese Lösung aus und wie komme ich darauf.
Wie die Charakteristiken und Schockwege aussehen ist mir klar. Nur bei der Berechnung der schwachen Lösung, wo ich erst mit einer Testfunktion multiplizieren und dann integrieren muss, hapert es dann doch. Ich denke, mein Problem liegt einfach beim integrieren, wie integriere ich das Ganze so, dass ich weiß wie die Lösung aussieht?
Ich habe die Vermutung es ist folgende, kann mir das jemand bestätigen?

[mm] u(x,t)=\begin{cases} 2, & \mbox{für } x < \bruch{3}{2}\*t \\ 1, & \mbox{für } \bruch{3}{2}\*t < x < \bruch{1}{2}\*t + 2 \\ 0, & \mbox{für } x > \bruch{1}{2}\*t + 2 \end{cases} [/mm]

Vielen Dank im voraus, Kerli.

ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
erhaltungsgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Fr 20.10.2006
Autor: MatthiasKr

Hi Kerli,

ich denke, bei dieser Aufgabe sollst du die charakteristiken-loesung bestimmen und argumentieren, ob eine schwache loesung existiert und eindeutig ist. Wenn beide existieren, stimmen ja schwache und starke loesung grundsaetzlich ueberein, du brauchst also kein spezielles verfahren, um die schwache loesung zu bestimmen. diesen begriff braucht man fuer die erhaltungsgleichungen einfach, weil unstetigkeiten auftreten und man an diesen stellen nicht mehr von einer klassischen loesung sprechen kann.
Global gesehen hast du dann also eine schwache loesung, aber lokal, jenseits der schockwege, ist sie dennoch stark.
Ein bisschen klarer jetzt? ;-)

VG
Matthias

Bezug
                
Bezug
erhaltungsgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Mo 23.10.2006
Autor: kerli

Hey,
danke erstmal für die Antwort!
D.h. du würdest gar nicht integrieren, sondern einfach die Schockwege jeweils über die Rankine-Hugoniot-Sprungbedingung mit den jeweils linken und rechten Zuständen berechnen und die Charakteristiken mittels deren Formel und dann noch ne Zeichnung.
Durch die Unterscheidung der Riemann-Probleme in
[mm] u_{l} [/mm] > [mm] u_{r} [/mm] ergibt eindeutige Schocklösung,
[mm] u_{r} [/mm] > [mm] u_{l} [/mm] erlaubt mathematisch ohne Entropiebedingungen mehr als eine Lösung, wäre ich dann fertig.

Danke für deine Einschätzung des Problems...

mfG Kerli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]