matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungeninhomogene DGL erster Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ordinary Differential Equations" - inhomogene DGL erster Ordnung
inhomogene DGL erster Ordnung < Ordinary Differential Equations < Differential Equations < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials

inhomogene DGL erster Ordnung: Tipp/Idee
Status: (Frage) überfällig Status 
Date: 18:12 Mi 08/11/2017
Author: Thomas0086

Aufgabe
Finde möglichst alle Lösungen der folgenden linearen inhomogenen Differentialgleichungen erster Ordnung in x. Löse dazu zuerst die entsprechenden homogenen Differentialgleichungen  und  variiere  anschließend die Konstanten.  

b) [mm] y'(x)= \lambda y(x) + \bruch{\lambda^{n+1} x^{n}}{n!} [/mm]

mit n [mm] \in \IN [/mm] und [mm] \lambda \in \IR [/mm]

Hallo zusammen,

ich habe auf den ersten Seiten und per Suchfunktion keinen Thread gefunden, der diese Aufgabe behandelt. Daher hier meine Frage:


Aufgabe 1

[mm] y'(x)= \lambda y(x) + \bruch{\lambda^{n+1} x^{n}}{n!} [/mm]

Für den homogenen Teil komme ich auf folgende Gleichung [mm] y= e^{\lambda x} [/mm] c mit c [mm] \in \IR [/mm]

Für c'(x) folgt daraus:

[mm]c'(x)= e^{-\lambda x} \bruch{\lambda^{n} x^{n}}{n!} [/mm]

Das Integral über die rechte Seite bereitet mir Schwierigkeiten.

Ich habe versucht [mm] t=\lambda x [/mm] zu substituieren:

[mm]\integral_{}^{}{e^{-t} t^{n}dt} [/mm], komme damit aber nicht so richtig weiter, da ich n-mal integrieren müsste.

Alternativ sieht [mm]\bruch{x^{n}}{n!} [/mm] stark nach der Exponentialreihe aus, wüsste ab hier aber auch nicht weiter.



Über eine Tipp oder neuen Anstoß würde ich mich sehr freuen.

Liebe Grüße
Thomas


        
Bezug
inhomogene DGL erster Ordnung: Mitteilung
Status: (Statement) No reaction required Status 
Date: 18:54 Mi 08/11/2017
Author: Martinius

Hallo Thomas0086,

hast Du schon bei Wolfram alpha geguckt?

[]Wolfram


LG, Martinius

Bezug
                
Bezug
inhomogene DGL erster Ordnung: Frage (beantwortet)
Status: (Question) answered Status 
Date: 22:26 Mi 08/11/2017
Author: Thomas0086

Hallo Martinius,

Danke für deine Antwort. Auf Wolfram bin ich auch schon gestoßen, allerdings verstehe ich den Zusammenhang bzw. den Rechenschritt zur Gamma-Funktion nicht so recht, da mit diese bisher unbekannt ist/war.

Von
[mm] c'(x)= e^{-\lambda x} \bruch{\lambda^{n} x^{n}}{n!} [/mm] ausgehend:
Die Substitution
[mm] t=\lambda x [/mm] führt zu [mm] dx = dt/\lambda [/mm] und damit zu

[mm] \bruch{1}{n!\lambda} \integral_{}^{}{e^{-t} t^n dt} [/mm]

Über die partielle Integration komme ich auf:

[mm] \bruch{1}{n!\lambda}[-e^{t}t^{n} + n\integral_{}^{}{e^{-t} t^{n-1} dt}] [/mm]

Bei Wolfram steht, dass dies die "incomplete gamma function" sei. Laut Definition der Gamma Funktion wäre das Integral, da unbestimmt, allerdings die Gammafunktion.
Oder kommt hier zum tragen, dass [mm] \lambda \not= 0 [/mm] sein muss?

Danke schön.

Thomas

Bezug
                        
Bezug
inhomogene DGL erster Ordnung: Antwort
Status: (Answer) finished Status 
Date: 15:43 Do 09/11/2017
Author: leduart

Hallo
ich würde versuchen noch die 2 nächsten Interaktionen zu machen dann siehst du wie es läuft und hast für n eine endliche Reihe.
Gruß ledum

Bezug
        
Bezug
inhomogene DGL erster Ordnung: Fälligkeit abgelaufen
Status: (Statement) No reaction required Status 
Date: 18:20 So 12/11/2017
Author: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 36m 13. Diophant
ULinAAb/Permutationsgr./ Transposition
Status vor 10h 42m 63. rabilein1
MSons/Kann man beim Roulette verlier
Status vor 16h 39m 6. Al-Chwarizmi
UStoc/Geordnete Stichproben mit Wdh.
Status vor 1d 18h 26m 2. matux MR Agent
DiffGlPar/Abschätzung
Status vor 1d 20h 26m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]