matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheoriek-Färbbarkeit eines Subgraphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Graphentheorie" - k-Färbbarkeit eines Subgraphen
k-Färbbarkeit eines Subgraphen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

k-Färbbarkeit eines Subgraphen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 14:57 Sa 01.02.2014
Autor: MeineKekse

Aufgabe
Es sei G ein Graph mit e(G) Kanten und k >= 2 eine ganze Zahl. Zeigen sie, dass es einen k-partiten Subgraphen von G' [mm] \subseteq [/mm] G gibt, sodass e(G') >= [mm] \bruch{k-1}{k}e(G). [/mm]



Hi,

ich komme leider nicht weiter. Ich habe mir überlegt dies mit Induktion zu lösen, da wir bereits bewiesen haben dass jeder Graph einen bipartiten Subgraphen mit mindestens halb so vielen Kanten wie der ursprüngliche Graph besitzt, wäre der Induktionsanfang für k=2 gelöst.

Die Induktivorrausetzung, sei, dass obige Gleichung für alle k >= gilt.

Induktionsschritt: Gesucht wird ein k+1 färbbarer Subgraph von G mit gewünschter Eigenschaft.

Nach Induktionsvorraussetzung gibt es einen k-färbbaren Subgraphen  mit gewünschter Eigenschaft.

Sei dieser k färbbare Subgraph G' maximal, d.h. hinzufügen eines weiteren Knotens aus G führt dazu, dass G' nicht mehr k färbbar  ist.

Füge man also so einen Knoten hinzu, dann muss dieser mindesten k Kanten erhalten, damit G' nicht mehr k färbbar ist(mit jeder Farbe einmal verbunden).

Dann gilt e(G') + k >= [mm] \bruch{k-1}{k}e(G) [/mm] + k.

Weiter komme ich nicht. Ist mein Ansatz richtig.

Schoneinmal Danke im Vorraus

Grüße MeineKekse

        
Bezug
k-Färbbarkeit eines Subgraphen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 10.02.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4h 01m 2. ChopSuey
SVektoren/Vektor durch Zahl
Status vor 7h 56m 2. Al-Chwarizmi
DiffGlGew/Erstes Integral
Status vor 9h 05m 9. Diophant
UStoc/Stochastische Unabhängigkeit
Status vor 11h 20m 4. Al-Chwarizmi
UAlgGRK/Menge in der Potenz
Status vor 19h 51m 7. Diophant
STrigoFktn/cos2(x)=sin2(2x)
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]