matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigeskompakte mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - kompakte mengen
kompakte mengen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kompakte mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Do 24.04.2014
Autor: knowhow

Aufgabe
Seien X,Y [mm] \subset \IR^n [/mm] kompakt. Zeige, dass auch die Menge

X+Y:={x+y| x [mm] \in [/mm] X, y [mm] \in [/mm] Y} kompakt ist

hallo,

aus kompaktheit folgt, dass die Menge abgeschlossen und beschränkt ist. Nach Bolzano weierstraß gilt dann dass jede folge in X bzw. Y Teilfolge besitzt die gegen einen Pkt in X bzw Y konvergiert. aber was ich unter abgeschlossen auch verstehe:falls eine menge abgeschlossen ist dann muss die verknüpfung von 2 elemente auch in der menge liegen. ist es bis dahin richtig? aber wie zeige ich das? kann jemand mir dabei helfen?

gruß,
knowhow

        
Bezug
kompakte mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Do 24.04.2014
Autor: Richie1401

Hallo,

definieren wir mal [mm] Z:=X+Y:=\{x+y|x\in{X},y\in{Y}\} [/mm]

X und Y seien kompakt.

Im grunde gibt es mehrere Möglichkeiten jetzt heranzugehen:
1. Möglichkeit: Arbeite mit der Definition der Überdeckung.
2. Möglichkeit: Zeige Z ist beschränkt und abgeschlossen
3. Möglichkeit: Ist [mm] $(z_n)$ [/mm] Folge in Z, so ex. Teilfolge, die gegen ein Element aus Z konvergiert.

Du wolltest ja die letzte Möglichkeit nutzen.

Sei also [mm] Z\supset{(z_n)_{n=1}^\infty} [/mm] eine Folge. Dann lässt sich [mm] (z_n) [/mm] darstellen als [mm] z_n=x_n+y_n [/mm] für jedes [mm] n\in\IN [/mm] mit [mm] x_n\in{X} [/mm] und [mm] y_n\in{Y}. [/mm]

Nun nimm Teilfolgen von [mm] z_n [/mm] und zeige, dass dann die Teilfolge von [mm] x_n [/mm] in X und [mm] y_n [/mm] in Y konvergiert. Damit konvergiert die Teilfolge von [mm] z_n [/mm] dann in Z. Also ist dann Z kompakt.

Bezug
        
Bezug
kompakte mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:46 Fr 25.04.2014
Autor: fred97


>  aber was ich unter
> abgeschlossen auch verstehe:falls eine menge abgeschlossen
> ist dann muss die verknüpfung von 2 elemente auch in der
> menge liegen.


Nein, das ist mit "abgeschlossen" nicht gemeint.

Sei A eine Teilmenge des [mm] \IR^n. [/mm]

A ist abgeschlossen  

[mm] \gdw [/mm]

[mm] $\IR^n \setminus [/mm] A$ ist offen

[mm] \gdw [/mm]

für jede konvergente Folge [mm] (a_n) [/mm] in A ist auch [mm] \limes_{n\rightarrow\infty}a_n \in [/mm] A.

FRED


>  ist es bis dahin richtig? aber wie zeige ich
> das? kann jemand mir dabei helfen?
>  
> gruß,
> knowhow


Bezug
        
Bezug
kompakte mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 So 27.04.2014
Autor: knowhow

ich habe folgend gezeigt:

Z.z.  jede folge [mm] (x_k)_{k \in IN} \in [/mm] X+Y besitzt Teilfolgen [mm] (x_k_l)_{l \in \IN} [/mm] die gegen ein c [mm] \in [/mm] X+Y konvergiert.

Sei [mm] (x_k)_{k \in \IN} [/mm] eine bel. folge von X+Y, dann lässte sie sich darstellen:

[mm] (x_k)_{k \in \IN}=(a_k)_{k \in \IN}+(b_k)_{k \in \IN} [/mm] wobei [mm] (a_k) \in [/mm] X und [mm] (b_k) \in [/mm] Y.

Sei [mm] (a_k)_{k \in \IN} [/mm]  eine Folge von X und [mm] (b_k)_{k \in \IN} [/mm] eine Folge von Y. Da X kompakt besitzt [mm] (a_k) [/mm] Teilfolge [mm] (a_k_l)_{l \in IN} [/mm] die gegen ein [mm] a\in [/mm] X konvergiert. da Y kompakt besitzt [mm] (b_k) [/mm] Teilfolge [mm] (b_k_l)_{l \in \IN} [/mm] die gegen ein b [mm] \in [/mm] Y konvergieren.

dann gilt : [mm] (x_k_l)_{l \in \IN}=(a_k_l)_{l \in \IN} [/mm] + [mm] (b_k_l)_{l \in \IN} [/mm] eine Teilfolge von [mm] (x_k) \in [/mm] X+Y

Nach "rechenregel" von Grenzwert gilt dann:
[mm] \limes_{l\rightarrow\infty}(x_k_l)=\limes_{l\rightarrow\infty}(a_k_l)+\limes_{l\rightarrow\infty}(b_k_l)=a+b \in [/mm] X+Y. damit ist X+Y kompakt.

ist das richtig?


Bezug
                
Bezug
kompakte mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 So 27.04.2014
Autor: hippias


> ich habe folgend gezeigt:
>  
> Z.z.  jede folge [mm](x_k)_{k \in IN} \in[/mm] X+Y besitzt
> Teilfolgen [mm](x_k_l)_{l \in \IN}[/mm] die gegen ein c [mm]\in[/mm] X+Y
> konvergiert.
>  
> Sei [mm](x_k)_{k \in \IN}[/mm] eine bel. folge von X+Y, dann lässte
> sie sich darstellen:
>  
> [mm](x_k)_{k \in \IN}=(a_k)_{k \in \IN}+(b_k)_{k \in \IN}[/mm] wobei
> [mm](a_k) \in[/mm] X und [mm](b_k) \in[/mm] Y.
>
> Sei [mm](a_k)_{k \in \IN}[/mm]  eine Folge von X und [mm](b_k)_{k \in \IN}[/mm]
> eine Folge von Y.

"sei" ist der falsche Modus: Es ist [mm] $(a_{k})_{k\in \IN}$ [/mm] eine Folge etc.

> Da X kompakt besitzt [mm](a_k)[/mm] Teilfolge
> [mm](a_k_l)_{l \in IN}[/mm] die gegen ein [mm]a\in[/mm] X konvergiert. da Y
> kompakt besitzt [mm](b_k)[/mm] Teilfolge [mm](b_k_l)_{l \in \IN}[/mm] die
> gegen ein b [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Y konvergieren.
Beachte noch, dass die beiden konvergenten Teilfolgen nicht die gleichen Indices haben muessen. Mit einem kleinen Trick kannst Du die Indices entgiften: Waehle Teilfolge $(a_{k_{l})_{l\in \IN}$. Nun waehle aus der Teilfolge $(y_{k_{l}})_{l\in\IN}$ eine konvergente Teilfolge und bilde damit eine konvergente(?) Teilfolge von $(x_{k})$.

>  
> dann gilt : [mm](x_k_l)_{l \in \IN}=(a_k_l)_{l \in \IN}[/mm] +
> [mm](b_k_l)_{l \in \IN}[/mm] eine Teilfolge von [mm](x_k) \in[/mm] X+Y
>  
> Nach "rechenregel" von Grenzwert gilt dann:
> [mm]\limes_{l\rightarrow\infty}(x_k_l)=\limes_{l\rightarrow\infty}(a_k_l)+\limes_{l\rightarrow\infty}(b_k_l)=a+b \in[/mm]
> X+Y. damit ist X+Y kompakt.
>  
> ist das richtig?

>
Fast.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]