matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheoriemessbare Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - messbare Funktion
messbare Funktion < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

messbare Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Fr 25.04.2014
Autor: mathestudent111

Aufgabe
Wie kann ich zeigen, dass f(x)= [mm] \bruch{1}{x} [/mm] eine messbare Funktion ist?

Hallo Leute,

ich hoffe Ihr könnt mir helfen.

Gibts es zu der Aufgabe ein Satz, wo ich die Aussage beweisen kann?
Oder muss ich über die allgemeine Definition von "messbare Funktion" gehen?

LG
mathestudent111

        
Bezug
messbare Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Sa 26.04.2014
Autor: fred97


> Wie kann ich zeigen, dass f(x)= [mm]\bruch{1}{x}[/mm] eine messbare
> Funktion ist?
>  Hallo Leute,
>  
> ich hoffe Ihr könnt mir helfen.
>
> Gibts es zu der Aufgabe ein Satz, wo ich die Aussage
> beweisen kann?


f ist auf [mm] \IR \setminus \{0\} [/mm] stetig

FRED

>  Oder muss ich über die allgemeine Definition von
> "messbare Funktion" gehen?
>  
> LG
>  mathestudent111


Bezug
                
Bezug
messbare Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Sa 26.04.2014
Autor: mathestudent111

ah ok.
Darum ist f(x) sofort messbar?
Kann ich diese Aussage irgendwo nachlesen?

LG

Bezug
                        
Bezug
messbare Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Sa 26.04.2014
Autor: fred97


> ah ok.
>  Darum ist f(x) sofort messbar?


Ums rumgucken, sofort und so umgehend wie geschwind !


>  Kann ich diese Aussage irgendwo nachlesen?

In jedem Buch/Skript zur Integrationstheorie

FRED

>  
> LG


Bezug
                                
Bezug
messbare Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:26 Sa 26.04.2014
Autor: mathestudent111

Ich danke dir!
Du hast mir sehr geholfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]