matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteAbbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Abbildung
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Abbildung

Definition Abbildung


Schule

Es seien X und Y zwei beliebige Mengen.
Eine eindeutige Zuordnung der Elemente aus X zu den Elementen aus Y heißt Abbildung.


Bemerkungen

Die Menge X heißt Definitionsbereich und Y Wertebereich.
Eine Funktion ist eine spezielle Abbildung mit dem Wertebereich $ \IR $ oder $ \IC $.


Universität

X und Y seien Mengen, $ F\subseteq X\times Y $ eine Relation
Ist F linksvollständig und rechtseindeutig, dann nennt man das Tripel $ f:=(X,Y,F) $ eine Abbildung.

Definition aus dem Meyberg:

$ X,\,Y $ seien Mengen. Ein Tripel $ f=(X,Y,F) $ heißt eine Abbildung von $ X $ in $ Y $ (oder eine Funktion auf $ X $ mit Werten in $ Y $), wenn gilt:

($ A_1 $) $ F  \subseteq X \times Y $
($ A_2 $) Zu jedem $ x \in X $ gibt es genau ein $ y \in Y $ mit $ (x,y) \in F $.

$ F $ heißt der Graph, $ X $ die Quelle oder der Definitionsbereich, $ Y $ das Ziel oder der Wertevorrat von $ f $.

Das durch $ x $ eindeutig bestimmte Element $ y $ mit $ (x,y) \in F $ wird meist mit $ f(x) $ bezeichnet. Also

$ y=f(x) \ \Leftrightarrow \ (x,y) \in F $.

Folgende Schreibweisen für eine Abbildung $ f=(X,Y,F) $ werden verwendet:

$ f:X \to Y $ oder $ X \stackrel{f}{\to} Y $,

wenn man über $ F $ nichts Näheres zu wissen braucht, andernfalls fügt man hinzu

$ y:=f(x) $ oder $ f:x \mapsto y $ (lies: "$ f $ bildet $ x $ auf $ y $ ab").

Bemerkung:

Die "klassische" Definition einer Abbildung, etwa so "Eine Abbildung $ f $ von $ X $ nach $ Y $ ist eine Vorschrift, die jedem Element $ x \in X $ eindeutig ein Element $ y=f(x) $ aus $ Y $ zuordnet", ist natürlich in obiger Definition verarbeitet. Da aber ein Tripel ein besseres mathematisches Objekt ist als eine Vorschrift, zieht man heute die erste Definition vor. Die Vorschrift allerdings bleibt doch in konkreten Fällen erhalten, nämlich in der Beschreibung von $ F $. Auch wir werden sehr oft zu prüfen haben, ob eine durch eine gewisse Vorschrift definierte Teilmenge $ F \subseteq X \times Y $ auch wirklich eine Abildung $ f=(X,Y,F) $ definiert, Dazu muss man prüfen, ob jedes Element von $ X $ auch als erste Komponente eines Elementes aus $ F $ vorkommt (das ist meist trivial zu sehen) und, was wichtiger ist, dass $ (x,y) \in F $ und $ (x,y') \in F $ nur für $ y=y' $ möglich ist. In anderer Schreibweise sieht das so aus:

$ x=x' \quad \Leftrightarrow \quad f(x) = f(x') $.

Abbildungen $ f(X,Y,F) $ und $ f'=(X',Y',F') $ sind genau dann gleich, wenn $ X=X' $, $ Y=Y' $ und $ F=F' $ gilt; d.h. wenn Quelle, Ziel und Graph übereinstimmen. Insbesondere

$ F=F' $

$ \Leftrightarrow $ (Für alle $ x \in X $ gilt: $ (x,y) \in F \ \Leftrightarrow \ (x,y) \in F' $)

$ \Leftrightarrow $ $ f(x) =f'(x) $ für alle $ x \in X $.

D.h. Abbildungen $ f:X \to Y $ und $ f' : X' \to Y' $ sind genau dann gleich, wenn $ X=X' $, $ Y=Y' $ und $ f(x) = f'(x) $ für alle $ x \in X $ gilt.

Ist $ f=(X,Y,F) $ eine Abbildung und $ Y \subseteq Y' $, dann ist offensichtlich $ f'=(X,Y',F) $ ebenfalls eine Abbildung. Ist $ f $ injektiv, so auch $ f' $. Hingegen ist $ f' $ im Falle $ Y \ne Y' $ niemals surjektiv, auch wenn $ f $ surjektiv ist. Dennoch möchte man zwischen $ f $ und $ f' $ keinen wesentlichen Unterschied machen. Man nennt Abbildungen $ f=(X,Y,F) $ und $ g=(A,B,G) $ im wesentlichen gleich, wenn $ X=A $ und $ F=G $ gilt, d.h. $ X=A $ und $ f(x)=g(x) $ für alle $ x \in X $. Wenn Missverständnisse ausgeschlossen sind, schreibt man auch hierfür $ f=g $.

Eine gegebene Abbildung $ f:X \to Y $ kann man auf Teilmengen von $ X $ beschränken. Sei $ U \subseteq X $, dann heißt

$ f\vert_U $: $ U \to Y $, $ f\vert_U(x)=f(x) $ für alle $ x \in U $,

die Restriktion von $ f $ auf $ U $. Es ist $ f\vert_U =f $ nur für $ U=X $.

Die Abbildung $ Id:X \to X $, $ Id(x)=x $, wird als Identität (auf $ X $) bezeichnet. Wenn nötig, schreibt man hierfür auch $ Id_X $.

Seien $ f=(X,Y,F) $, $ g=(Y,Z,G) $ Abbildungen und $ x\in X $. Man definiert eine Teilmenge $ G\circ F \subseteq X \times Z $ durch

$ (x,y) \in G \circ F $ $ :\Leftrightarrow $ $ (x,y) \in F $ und $ (y,z) \in G $.

Dann ist $ (X,Z,G \circ F) $ eine Abbildung, da $ y $ durch $ x $ und $ z $ durch $ y $ eindeutig bestimmt sind, und somit $ z $ durch $ x $ eindeutig bestimmt ist. Diese Abbildung wird mit $ g \circ f $ ($ g $ komponiert mit $ f $) bezeichnet und heißt das Kompositum (oder Produkt) von $ f $ und $ g $. In anderer Schreibweise sieht das so aus:

Für $ X \stackrel{f}{\to} Y \stackrel{g}{\to} Z $ ist $ g \circ f:X \to Z $ definiert durch

$ (g \circ f)(x):=g(f(x)) $ für alle $ x \in X $.

Ist $ h: Z \to A $ eine weitere Abbildung, dann gilt:

$ h \circ (g \circ f) = (h \circ g) \circ f $,

denn Quelle und Ziel sind gleich und für alle $ x \in X $ gilt:

$ [h \circ (g \circ f)](x) = h(g(f(x))) = [(h \circ g) \circ f](x) $.

Sei $ f: X \to Y $ eine Abbildung und $ U \subseteq X $. Die Menge

$ f(U):=\{f(x)\, \vert  \, x \in U\} $

heißt das $ f $-Bild von $ U $. Das $ f $-Bild von $ X $, $ f(X) $, wird als $ Bild(f) $ bezeichnet. Für eine Teilmenge $ V \subseteq Y $ nennt man die Menge

$ f^{-1}(V):=\{x \in X\, \vert\, f(x) \in V\} $

das $ f $-Urbild von $ V $. Es gelten die folgenden Rechenregeln:

$ A,B \subseteq X \ \Rightarrow \ \left\{ \begin{array}{ccc} f(A \cup B) & = & f(A) \cup f(B)\\[5pt] f(A \cap B)&  \subseteq & f(A) \cap f(B) \end{array} \right. $

$ U,V \subseteq Y \ \Rightarrow \ \left\{ \begin{array}{ccc} f^{-1}(U \cup V) &= & f^{-1}(U) \cup f^{-1}(V)\\[5pt] f^{-1}(U \cap V) & = & f^{-1}(U) \cap f^{-1}(V) \end{array} \right. $


Quelle: isbn3446130799



Mögliche Eigenschaften spezieller Abbildungen

;additiv:
;alternierend (siehe Determinantenfunktion):
;biholomorph:
;bijektiv:
;bilinear:
;differenzierbar:
;epimorph:
;gleichmäßig stetig:
;holomorph:
;homomorph:
;idempotent: $ f:\ X\to Y $ heißt idempotent $ \gdw $ $ f(x)=(f\circ f)(x) $ für alle $ x\in X $ bzw. $ f(x)=f(\;f(x)\;) $ für alle $ x\in X $
;identisch:
;injektiv:
;integrierbar:
;isomorph:
;komplexwertig:
;konstant:
;leer:
;linear:
;multilinear:
;offen:
;reellwertig:
;selbstähnlich:
;semilinear:
;sequilinear:
;stetig:
;stetig differenzierbar:
;surjektiv:
;symmetrisch:
;umkehrbar:

Erstellt: So 07.11.2004 von Marc
Letzte Änderung: So 22.10.2006 um 16:11 von Marc
Weitere Autoren: informix, Stefan
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

Alle Foren
Status vor 3h 01m 7. donquijote
ULinAMat/Gruppe der inv. Matrizen
Status vor 1d 7h 50m 11. Al-Chwarizmi
STrigoFktn/Cosinus und Arc Cosinus
Status vor 1d 16h 49m 7. Diophant
UAnaR1FunkStetig/Stetigkeit im Nullpunkt
Status vor 3d 1. Prospekthuellen
UStoc/Galton-Watson mit max. Höhe
Status vor 4d 7. maggieNess
Taschenrechner/Tinspire Cx Cas Einstellungen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]