matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKapitel 1: Elementare GruppentheorieAbschnitt 1.3, Aufgabe 4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Kapitel 1: Elementare Gruppentheorie" - Abschnitt 1.3, Aufgabe 4
Abschnitt 1.3, Aufgabe 4 < Kapitel 1: Elementar < Bosch < Universität < Courses on maths < Maths <
View: [ threaded ] | ^ Forum "Kapitel 1: Elementare Gruppentheorie"  | ^^ all forums  | ^ Tree of Forums  | materials

Abschnitt 1.3, Aufgabe 4: Aufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Date: 11:59 Fr 15/09/2006
Author: statler

Aufgabe
Es seien $m, n [mm] \in \IN [/mm] - [mm] \{0\}$. [/mm] Man zeige, daß die Gruppen [mm] $\IZ/mn\IZ$ [/mm] und [mm] $\IZ/m\IZ \times \IZ/n\IZ$ [/mm] genau dann isomorph sind, wenn $m$ und $n$ teilerfremd sind. Insbesondere ist ein Produkt zweier zyklischer Gruppen mit teilerfremden Ordnungen wieder zyklisch.

(Das Produkt zweier Gruppen ist die Menge der geordneten Paare mit komponentenweiser Verknüpfung.)


        
Bezug
Abschnitt 1.3, Aufgabe 4: Frage (beantwortet)
Status: (Question) answered Status 
Date: 00:40 Mi 20/09/2006
Author: Frusciante

Hallo Kurs!

> Es seien m, n [mm]\in \IN[/mm] - {0}. Man zeige, daß die Gruppen
> [mm]\IZ/mn\IZ[/mm] und [mm]\IZ/m\IZ \times \IZ/n\IZ[/mm] genau dann isomorph
> sind, wenn m und n teilerfremd sind.

[mm] $\IZ/mn\IZ$ [/mm] ist zyklisch mit Ordnung $m*n$, es ist [mm] $\langle 1_{\IZ/mn\IZ}\rangle=\IZ/mn\IZ$. [/mm]

Sei [mm] $(x,y)\in\IZ/m\IZ\times\IZ/n\IZ$ [/mm]

[mm] $k:=\ggT(m,n)\ \Rightarrow\ \exists n',m'\in\IZ\ [/mm] :\ n=k*n', m=k*m'$

Es gilt [mm] $(x,y)*(n'*k*m')=(x*(n'*k*m'),y*(n'*k*m'))=((x*m)*n',(y*n)*m')=(0_{\IZ/m\IZ},0_{\IZ/n\IZ})=0_{\IZ/m\IZ\times\IZ/n\IZ}$, [/mm] d.h. [mm] $\operatorname{ord}(x,y)\le [/mm] n'*k*m'$ (*)

Nun zum Beweis:

[mm] "$\Rightarrow$" [/mm]

Es ex. ein Isomorphismus [mm] $\phi:\ \IZ/mn\IZ\to\IZ/m\IZ\times\IZ/n\IZ$ [/mm] und [mm] $\langle u\rangle=\IZ/mn\IZ$ [/mm]

[mm] $\Rightarrow\ \langle\phi(u)\rangle=\IZ/m\IZ\times\IZ/n\IZ$ [/mm]

[mm] $\Rightarrow\ \operatorname{ord}(\phi(u))=n*m$ [/mm]

Mit (*) folgt:

[mm] $\Rightarrow\ n*m\le [/mm] n'*k*m'$

[mm] $\Rightarrow\ n*m\le [/mm] n*m'$

[mm] $\Rightarrow\ m\le [/mm] m'$, ebenso [mm] $n\le [/mm] n'$

[mm] $\Rightarrow\ [/mm] m=m', n=n', [mm] k=1=\ggT(m,n)$ [/mm]

[mm] "$\Leftarrow$" [/mm]

$n,m$ teilerfremd

Es seien [mm] $x,y\in\IZ$ [/mm] mit [mm] $\langle x\rangle=\IZ/m\IZ$ [/mm] und [mm] $\langle y\rangle=\IZ/n\IZ$ [/mm]

[mm] $\Rightarrow\ \operatorname{ord}(x)=m, \operatorname{ord}(y)=n$ [/mm] und [mm] $x\not=0, y\not=0$ [/mm]

$(x,y)*p=(0,0)$

[mm] $\Rightarrow\ [/mm] p=m*m', p=n*n'$

[mm] $\Rightarrow\ [/mm] m*m'=n*n'$

[mm] $\ggT(m,n)=1\ \Rightarrow\ \exists k\in\IZ\ [/mm] :\ m'=k*n,\ \ n'=k*m$

[mm] $\Rightarrow\ [/mm] p=m*n*k$

[mm] $\Rightarrow\ \operatorname{ord} (x,y)\ge [/mm] m*n*k$

Wegen [mm] $\operatorname{ord}(x,y)|\operatorname{ord} \IZ/m\IZ\times\IZ/n\IZ=m*n$: [/mm]

[mm] $\Rightarrow\ \operatorname{ord} [/mm] (x,y)=mn$

[mm] $\Rightarrow\ \langle (x,y)\rangle=\IZ/m\IZ\times\IZ/n\IZ$ [/mm]

Ein Isomorphismus [mm] $\varphi$ [/mm] muss nun nur noch ein erzeugendes Element von [mm] $\IZ/mn\IZ$ [/mm] auf ein erzeugendes Element von [mm] $\IZ/m\IZ\time\IZ/n\IZ$ [/mm] abbilden, z.B.

[mm] $\varphi:\ \IZ/mn\IZ\to\IZ/m\IZ\times\IZ/n\IZ$ [/mm]

[mm] $\varphi(1_{\IZ/mn\IZ}):=(1_{\IZ/m\IZ},1_{\IZ/n\IZ})$ [/mm]

Die Bilder der restlichen Elemente von [mm] $\IZ/mn\IZ$ [/mm] ergeben sich so:

[mm] $\varphi(z)=\varphi(k*1_{\IZ/mn\IZ})=k*\varphi(1_{\IZ/mn\IZ})=k*(1_{\IZ/m\IZ},1_{\IZ/n\IZ})$ [/mm] mit k so gewählt, dass [mm] $z=k*1_{\IZ/mn\IZ}$ [/mm]

[mm] $\varphi$ [/mm] ist (leicht nachweisbar) injektiv (bzw. surjektiv), woraus wegen der Endlichkeit des Definitions- und Zielbereichs die Bijektivität von [mm] $\varphi$ [/mm] folgt.

[mm] $\Rightarrow\ \IZ/mn\IZ\cong\IZ/m\IZ\times\IZ/n\IZ$ [/mm]

> Insbesondere ist ein
> Produkt zweier zyklischer Gruppen mit teilerfremden
> Ordnungen wieder zyklisch.

Dies folgt nun aus dem oben gezeigtem dadurch, dass jede endliche zyklische Gruppe isomorph zu einem [mm] $\IZ/k\IZ$ [/mm] ist.

Gruß, Frusciante

Bezug
                
Bezug
Abschnitt 1.3, Aufgabe 4: Antwort
Status: (Answer) finished Status 
Date: 02:00 Di 26/09/2006
Author: felixf

Hallo Frusciante!

> > Es seien m, n [mm]\in \IN[/mm] - {0}. Man zeige, daß die Gruppen
> > [mm]\IZ/mn\IZ[/mm] und [mm]\IZ/m\IZ \times \IZ/n\IZ[/mm] genau dann isomorph
> > sind, wenn m und n teilerfremd sind.
>
> [mm]\IZ/mn\IZ[/mm] ist zyklisch mit Ordnung [mm]m*n[/mm], es ist [mm]\langle 1_{\IZ/mn\IZ}\rangle=\IZ/mn\IZ[/mm].

...wobei du mit [mm] $1_{\IZ/mn\IZ}$ [/mm] die Restklasse von $1$ in [mm] $\IZ/mn\IZ$ [/mm] meinst (und nicht etwa das neutrale Element von [mm] $\IZ/mn\IZ$). [/mm]

> Sei [mm](x,y)\in\IZ/m\IZ\times\IZ/n\IZ[/mm]
>  
> [mm]k:=\ggT(m,n)\ \Rightarrow\ \exists n',m'\in\IZ\ :\ n=k*n', m=k*m'[/mm]
>  
> Es gilt
> [mm](x,y)*(n'*k*m')=(x*(n'*k*m'),y*(n'*k*m'))=((x*m)*n',(y*n)*m')=(0_{\IZ/m\IZ},0_{\IZ/n\IZ})=0_{\IZ/m\IZ\times\IZ/n\IZ}[/mm],
> d.h. [mm]\operatorname{ord}(x,y)\le n'*k*m'[/mm] (*)
>  
> Nun zum Beweis:
>  
> "[mm]\Rightarrow[/mm]"
>  
> Es ex. ein Isomorphismus [mm]\phi:\ \IZ/mn\IZ\to\IZ/m\IZ\times\IZ/n\IZ[/mm]
> und [mm]\langle u\rangle=\IZ/mn\IZ[/mm]
>  
> [mm]\Rightarrow\ \langle\phi(u)\rangle=\IZ/m\IZ\times\IZ/n\IZ[/mm]
>  
> [mm]\Rightarrow\ \operatorname{ord}(\phi(u))=n*m[/mm]
>  
> Mit (*) folgt:
>  
> [mm]\Rightarrow\ n*m\le n'*k*m'[/mm]
>  
> [mm]\Rightarrow\ n*m\le n*m'[/mm]
>  
> [mm]\Rightarrow\ m\le m'[/mm], ebenso [mm]n\le n'[/mm]
>  
> [mm]\Rightarrow\ m=m', n=n', k=1=\ggT(m,n)[/mm]

[ok]

> "[mm]\Leftarrow[/mm]"
>  
> [mm]n,m[/mm] teilerfremd
>  
> Es seien [mm]x,y\in\IZ[/mm] mit [mm]\langle x\rangle=\IZ/m\IZ[/mm] und
> [mm]\langle y\rangle=\IZ/n\IZ[/mm]
>  
> [mm]\Rightarrow\ \operatorname{ord}(x)=m, \operatorname{ord}(y)=n[/mm]
> und [mm]x\not=0, y\not=0[/mm]
>  
> [mm](x,y)*p=(0,0)[/mm]
>  
> [mm]\Rightarrow\ p=m*m', p=n*n'[/mm]
>  
> [mm]\Rightarrow\ m*m'=n*n'[/mm]
>  
> [mm]\ggT(m,n)=1\ \Rightarrow\ \exists k\in\IZ\ :\ m'=k*n,\ \ n'=k*m[/mm]
>  
> [mm]\Rightarrow\ p=m*n*k[/mm]
>  
> [mm]\Rightarrow\ \operatorname{ord} (x,y)\ge m*n*k[/mm]
>  
> Wegen [mm]\operatorname{ord}(x,y)|\operatorname{ord} \IZ/m\IZ\times\IZ/n\IZ=m*n[/mm]:
>  
> [mm]\Rightarrow\ \operatorname{ord} (x,y)=mn[/mm]
>  
> [mm]\Rightarrow\ \langle (x,y)\rangle=\IZ/m\IZ\times\IZ/n\IZ[/mm]

Genau. Im Prinzip bist du auch hier schon fertig, da je zwei zyklische Gruppen von Ordnung $n [mm] \cdot [/mm] m$ isomorph sind.

> Ein Isomorphismus [mm]\varphi[/mm] muss nun nur noch ein erzeugendes
> Element von [mm]\IZ/mn\IZ[/mm] auf ein erzeugendes Element von
> [mm]\IZ/m\IZ\time\IZ/n\IZ[/mm] abbilden, z.B.
>  
> [mm]\varphi:\ \IZ/mn\IZ\to\IZ/m\IZ\times\IZ/n\IZ[/mm]
>  
> [mm]\varphi(1_{\IZ/mn\IZ}):=(1_{\IZ/m\IZ},1_{\IZ/n\IZ})[/mm]
>  
> Die Bilder der restlichen Elemente von [mm]\IZ/mn\IZ[/mm] ergeben
> sich so:
>  
> [mm]\varphi(z)=\varphi(k*1_{\IZ/mn\IZ})=k*\varphi(1_{\IZ/mn\IZ})=k*(1_{\IZ/m\IZ},1_{\IZ/n\IZ})[/mm]
> mit k so gewählt, dass [mm]z=k*1_{\IZ/mn\IZ}[/mm]
>  
> [mm]\varphi[/mm] ist (leicht nachweisbar) injektiv (bzw. surjektiv),
> woraus wegen der Endlichkeit des Definitions- und
> Zielbereichs die Bijektivität von [mm]\varphi[/mm] folgt.
>  
> [mm]\Rightarrow\ \IZ/mn\IZ\cong\IZ/m\IZ\times\IZ/n\IZ[/mm]
>  
> > Insbesondere ist ein
> > Produkt zweier zyklischer Gruppen mit teilerfremden
> > Ordnungen wieder zyklisch.
>  
> Dies folgt nun aus dem oben gezeigtem dadurch, dass jede
> endliche zyklische Gruppe isomorph zu einem [mm]\IZ/k\IZ[/mm] ist.

[ok]

LG Felix


Bezug
        
Bezug
Abschnitt 1.3, Aufgabe 4: Frage (beantwortet)
Status: (Question) answered Status 
Date: 15:00 Mi 20/09/2006
Author: just-math

Hola amigos,

versuche ich auch dieses Aufgabe.

Wenn sich m und n nicht teilerfremd sind, so kann [mm] \ZI\slash m\IZ\:\times\:\IZ\slash n\IZ [/mm] nicht zyklisch von Ordnung mn sein, denn sei angenommen dass
(i,j) Erzeuger (genauer: das Restklasse von i, das restklasse von j), so muss i das Gruppe [mm] \IZ\slash m\IZ [/mm] erzeugen und damit ggt 1 mit m haben, analog hat j ggt 1 mit n. Ordnung von i ist dann m und Ordnung von j ist n. Aber dann ist [mm] \frac{mn}{ggt(m,n)}\cdot [/mm] (i,j) = (0,0) und somit Ordnung ist nicht gross genug.

Wenn m und n teilerfremd sind, so zeigen wir, dass [mm] \IZ\slash m\IZ\times \IZ\slash n\IZ [/mm] zyklisch von das Ordnung mn ist, dann ist es schon isomorph zu [mm] \IZ\slash mn\IZ. [/mm]

Behauptung: ist (1,1) Erzeuger.

Beweis:

Reicht zu zeigen dass Ordnung von (1,1) ist mn. Angenommen [mm] a\cdot [/mm] (1,1)=(a,a)=(0,0) in das Gruppe [mm] \ZI\slash m\IZ\:\times\:\IZ\slash n\IZ [/mm] .
Können wir annehmen [mm] 1\leq a\leq [/mm] mn.
Also muss m|a und n|a gelten, also wegen ggt(m,n)=1 muss a=mn sein. Also Ordnung ist mn, somit Isomorphie ist bewiesen.

Liebes Gruss

just-math

Bezug
                
Bezug
Abschnitt 1.3, Aufgabe 4: Antwort
Status: (Answer) finished Status 
Date: 01:54 Di 26/09/2006
Author: felixf

Hallo just-math!

> Wenn sich m und n nicht teilerfremd sind, so kann [mm]\ZI\slash m\IZ\:\times\:\IZ\slash n\IZ[/mm]
> nicht zyklisch von Ordnung mn sein, denn sei angenommen
> dass
>  (i,j) Erzeuger (genauer: das Restklasse von i, das
> restklasse von j), so muss i das Gruppe [mm]\IZ\slash m\IZ[/mm]
> erzeugen und damit ggt 1 mit m haben, analog hat j ggt 1
> mit n. Ordnung von i ist dann m und Ordnung von j ist n.
> Aber dann ist [mm]\frac{mn}{ggt(m,n)}\cdot[/mm] (i,j) = (0,0) und
> somit Ordnung ist nicht gross genug.

Genau.

> Wenn m und n teilerfremd sind, so zeigen wir, dass
> [mm]\IZ\slash m\IZ\times \IZ\slash n\IZ[/mm] zyklisch von das
> Ordnung mn ist, dann ist es schon isomorph zu [mm]\IZ\slash mn\IZ.[/mm]
>  
> Behauptung: ist (1,1) Erzeuger.
>  
> Beweis:
>  
> Reicht zu zeigen dass Ordnung von (1,1) ist mn. Angenommen
> [mm]a\cdot[/mm] (1,1)=(a,a)=(0,0) in das Gruppe [mm]\ZI\slash m\IZ\:\times\:\IZ\slash n\IZ[/mm]
> .
>  Können wir annehmen [mm]1\leq a\leq[/mm] mn.
>  Also muss m|a und n|a gelten, also wegen ggt(m,n)=1 muss
> a=mn sein. Also Ordnung ist mn, somit Isomorphie ist
> bewiesen.

Exakt.

LG Felix


Bezug
View: [ threaded ] | ^ Forum "Kapitel 1: Elementare Gruppentheorie"  | ^^ all forums  | ^ Tree of Forums  | materials


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]