matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAnzahl nicht-injektiver Abb.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Anzahl nicht-injektiver Abb.
Anzahl nicht-injektiver Abb. < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl nicht-injektiver Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 01.12.2015
Autor: tommy2015

Aufgabe
n/a

Ich möchte berechnen wie viele Möglichkeiten es gibt, um jedem Element der Menge K genau ein Element der Menge N zuzuordnen, wobei es erlaubt ist Elementen in K auch mehrere S zuzuordnen. Das müsste eine nicht-injektive Abbildung sein.

Ich habe darüber nachgedacht, ob man das Problem mit den Mitteln der Stochastik lösen kann, z.B. mit der Methode der Variation ohne Zurücklegen:

v = n!/(n-k)!

Ich denke aber, dass es nicht so einfach ist? Gesucht ist im Prinzip die mögliche Anzahl der nicht-injektiven Abbildungen zwischen den beiden Mengen.

Viele Grüße,

Tommy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Anzahl nicht-injektiver Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Di 01.12.2015
Autor: fred97


> n/a
>  Ich möchte berechnen wie viele Möglichkeiten es gibt, um
> jedem Element der Menge K genau ein Element der Menge N
> zuzuordnen,

Tja, ich kann nur spekulieren: bei K und N handelt es sich um endliche Mengen ?


> wobei es erlaubt ist Elementen in K auch
> mehrere S zuzuordnen.



Ja, was jetzt ? Wird nun jedem Element aus K genau ein El. aus N zugeordnet (dann haben wir eine Funktion) oder ist es auch erlaubt Elementen in K mehrere El. aus N zuzuordnen (dann haben wir eine Relation) ???

Was ist S ??


>  Das müsste eine nicht-injektive
> Abbildung sein.

????


>
> Ich habe darüber nachgedacht, ob man das Problem mit den
> Mitteln der Stochastik lösen kann, z.B. mit der Methode
> der Variation ohne Zurücklegen:
>  
> v = n!/(n-k)!
>  
> Ich denke aber, dass es nicht so einfach ist? Gesucht ist
> im Prinzip die mögliche Anzahl der nicht-injektiven
> Abbildungen zwischen den beiden Mengen.


Fragen über FRagen. Bitte präzisiere Dein Anliegen.

FRED

>  
> Viele Grüße,
>  
> Tommy
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>  


Bezug
                
Bezug
Anzahl nicht-injektiver Abb.: Präzesierung
Status: (Frage) beantwortet Status 
Datum: 18:36 Di 01.12.2015
Autor: tommy2015

Vielen Dank für die Antwort! Ja es handelt sich um endliche Mengen.

z.B.:

K = {1,2,3}
N = {A,B,C}

Jedes k [mm] \in [/mm] K soll ein n [mm] \in [/mm] N zugeordnet werden. Jedem n dürfen auch mehrere k zugeordnet werden. Jedes k darf nur einem n zugeordnet werden (=nicht-injektive Abbildung/Relation)

Beste Grüße,

Tommy


Bezug
                        
Bezug
Anzahl nicht-injektiver Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 02.12.2015
Autor: Gonozal_IX

Hiho,

offensichtlich ist die Anzahl aller Abbildungen von $K [mm] \to [/mm] N$ gerade [mm] $|N|^{|K|}$ [/mm]

Die Anzahl an injektiven Abbildungen ist gerade [mm] \frac{|N|!}{(|N|-|K|)!} [/mm] sofern $|N| [mm] \ge [/mm] |K|$, ansonsten 0.

Also ergibt sich die Anzahl der nicht injektiven Abbildungen als?

Gruß,
Gono




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 10h 11m 9. rmix22
Transformationen/Dirac und Rechteck
Status vor 12h 05m 2. luis52
UStoc/Cov(X,Y)
Status vor 14h 57m 2. Al-Chwarizmi
SStoc/Münze
Status vor 15h 15m 4. angela.h.b.
UWTheo/unendlicher Würfelwurf Aufgabe
Status vor 1d 5h 34m 8. matux MR Agent
UAnaSon/Lösung einer Ungleichung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]